Had a few private messages asking about this and I apologize for my long absence but I've been busy. I have discovered how it works and for the benefit of everyone here and mainly Matt who helped me quite a lot here are some unanswered questions, Matt you were right you do have to prime the system to get the magnetic field.
Any choke whether it be common mode or differential mode choke works on a basic principle. You have two frequencies, a primary frequency you wish to pass through the choke and a secondary frequency you wish to block and that principle is based on Q factors of the coils.
Stan's system is very simple, you prime the two chokes with a low impedance load like any other common mode or differential mode choke system. That load has to be high enough to prime the chokes with thousands of volts trapped in the windings so how does it work? The fuel cell circuit actually passes current (not the tubes themselves) that has a significantly low impedance to create current flow. No choke can EVER work without a primary current flow and that's a fact. Stan Meyer used a resistor in parallel with the cell and it's visible in the pictures, it's about 200 Ohms which is a match of his chokes electrical resistance not their impedance at the carrier frequency. He primes the chokes by running them at a carrier wave frequency and current flows through the resistor like any normal circuit. The chokes are NOT resonant as the carrier frequency, they are resonant at another frequency - the secondary frequency. Any choke system that purges unwanted signals out of a system has to dump those signals to ground through L/C or it burns then up via L/R, in fact some systems use L/C/R together in various ways.
Stan set his mind on L/C but the C wasn't dumped to ground like in normal systems, it was allowed to build on massive caps. The carrier wave primes the chokes into the resistor then Stan introduces a modulation into the fray. The Q factor of the chokes is such that the modulation frequency is at the self resonant frequency of the chokes and those chokes are ringing. If you tune any system based on the Q factor of the chokes then your options are really wide open at that point and you have choices.
But here lies the beauty of this system: During the normal operation of the carrier wave into the resistor, the resistor doesn't actually use high voltage, it uses current and is only voltage rated at it's given ohmic value. The voltage potential in the chokes is 20kv + but the resistor will not in any way recognize that fact, it can only draw voltage based on the Q factor at low impedance and Ohms law. The high voltage potential is actually invisible to the resistor because the high voltage potential is only visible at high impedance!
Stan simply connected his cell to the self resonant frequency of the coils and his positive potential built up on the positive cell because of the diode not allowing a tank circuit to form. Understanding what happens here is not easy by any stretch of the imagination but I'll try to explain it. When the chokes are modulated at their self resonant frequency they will by nature try to form a relationship with ANYTHING connected to them. If it finds that the relationship of a capacitor to be equal in impedance and correct phase it will form a LC or tank circuit with it, if it finds a lower impedance then it will come out of resonance and act just like the carrier wave and induce current. It is all based on WHAT THE CHOKE SEE'S. If there is a diode in the potential tank circuit it cannot take a look in one particular direction only the other but it will take a peek in the direction it can look. In other words it 'pings' it. After it pings it, the normal response is to receive a 'ping' back from another coil or cap and the push pull starts if correct phase and impedance is there. BUT the diode stops the reverse ping and no relationship can be formed at all. Chokes however don't just send one ping, they'll continue to take a peek indefinitely because they have a habit of trying to dump their contents on something else. Stan's system doesn't allow the chokes to understand what they are pinging into, they haven't got a clue because the diode stops reverse pings and the chokes will continue pinging at a very fast rate of knots into a UNKNOWN impedance and phase. It becomes a biased push system and your cell can be any size you like because the chokes can't see them.
So where is everyone going wrong? Basically they are trying to send the modulated frequency into the chokes without the carrier wave and you can't do that. You have to send a carrier wave into a resistive load first then modulate at the resonant frequency of the chokes but timing or phase is also important, the right frequency carrier, it's phase relationship to the parasitic modulations are important so that when you are at resonance the carrier wave cannot interfere with modulations when they ping the cell. This is how it all works my friends and if you don't believe it then build a tiny version of what I've described and you'll see.
Now, the schematic below has another circuit that is totally unnecessary but it is there to explain what the diode does. Q2 driven by the second PWM is totally unnecessary and I've surrounded it in blue. Instead of chopping off the high impedance modulations and stop them entering the 220ohm resister via a diode I've chopped them off with a PWM and Q2, you can see the phase relationship which I've marked. The 220ohm resistor goes exactly where I've placed it on the schematic and the diode does two things, a: it switches between low and high impedance and b: it doesn't allow the cell to ping the chokes and form a tank circuit, instead you end up with the chokes pinging an UNKNOWN impedance indefinitely. The modulation frequencies involved are what ever your chokes are self resonant at and your carrier wave frequency is where the 220ohm resister is happy and enough magnetic field is present in the chokes to provide an high voltage field in them. The beauty of it is that if phased correctly the diode will switch between high and low impedance. The true schematic is also below.
Any choke whether it be common mode or differential mode choke works on a basic principle. You have two frequencies, a primary frequency you wish to pass through the choke and a secondary frequency you wish to block and that principle is based on Q factors of the coils.
Stan's system is very simple, you prime the two chokes with a low impedance load like any other common mode or differential mode choke system. That load has to be high enough to prime the chokes with thousands of volts trapped in the windings so how does it work? The fuel cell circuit actually passes current (not the tubes themselves) that has a significantly low impedance to create current flow. No choke can EVER work without a primary current flow and that's a fact. Stan Meyer used a resistor in parallel with the cell and it's visible in the pictures, it's about 200 Ohms which is a match of his chokes electrical resistance not their impedance at the carrier frequency. He primes the chokes by running them at a carrier wave frequency and current flows through the resistor like any normal circuit. The chokes are NOT resonant as the carrier frequency, they are resonant at another frequency - the secondary frequency. Any choke system that purges unwanted signals out of a system has to dump those signals to ground through L/C or it burns then up via L/R, in fact some systems use L/C/R together in various ways.
Stan set his mind on L/C but the C wasn't dumped to ground like in normal systems, it was allowed to build on massive caps. The carrier wave primes the chokes into the resistor then Stan introduces a modulation into the fray. The Q factor of the chokes is such that the modulation frequency is at the self resonant frequency of the chokes and those chokes are ringing. If you tune any system based on the Q factor of the chokes then your options are really wide open at that point and you have choices.
But here lies the beauty of this system: During the normal operation of the carrier wave into the resistor, the resistor doesn't actually use high voltage, it uses current and is only voltage rated at it's given ohmic value. The voltage potential in the chokes is 20kv + but the resistor will not in any way recognize that fact, it can only draw voltage based on the Q factor at low impedance and Ohms law. The high voltage potential is actually invisible to the resistor because the high voltage potential is only visible at high impedance!
Stan simply connected his cell to the self resonant frequency of the coils and his positive potential built up on the positive cell because of the diode not allowing a tank circuit to form. Understanding what happens here is not easy by any stretch of the imagination but I'll try to explain it. When the chokes are modulated at their self resonant frequency they will by nature try to form a relationship with ANYTHING connected to them. If it finds that the relationship of a capacitor to be equal in impedance and correct phase it will form a LC or tank circuit with it, if it finds a lower impedance then it will come out of resonance and act just like the carrier wave and induce current. It is all based on WHAT THE CHOKE SEE'S. If there is a diode in the potential tank circuit it cannot take a look in one particular direction only the other but it will take a peek in the direction it can look. In other words it 'pings' it. After it pings it, the normal response is to receive a 'ping' back from another coil or cap and the push pull starts if correct phase and impedance is there. BUT the diode stops the reverse ping and no relationship can be formed at all. Chokes however don't just send one ping, they'll continue to take a peek indefinitely because they have a habit of trying to dump their contents on something else. Stan's system doesn't allow the chokes to understand what they are pinging into, they haven't got a clue because the diode stops reverse pings and the chokes will continue pinging at a very fast rate of knots into a UNKNOWN impedance and phase. It becomes a biased push system and your cell can be any size you like because the chokes can't see them.
So where is everyone going wrong? Basically they are trying to send the modulated frequency into the chokes without the carrier wave and you can't do that. You have to send a carrier wave into a resistive load first then modulate at the resonant frequency of the chokes but timing or phase is also important, the right frequency carrier, it's phase relationship to the parasitic modulations are important so that when you are at resonance the carrier wave cannot interfere with modulations when they ping the cell. This is how it all works my friends and if you don't believe it then build a tiny version of what I've described and you'll see.
Now, the schematic below has another circuit that is totally unnecessary but it is there to explain what the diode does. Q2 driven by the second PWM is totally unnecessary and I've surrounded it in blue. Instead of chopping off the high impedance modulations and stop them entering the 220ohm resister via a diode I've chopped them off with a PWM and Q2, you can see the phase relationship which I've marked. The 220ohm resistor goes exactly where I've placed it on the schematic and the diode does two things, a: it switches between low and high impedance and b: it doesn't allow the cell to ping the chokes and form a tank circuit, instead you end up with the chokes pinging an UNKNOWN impedance indefinitely. The modulation frequencies involved are what ever your chokes are self resonant at and your carrier wave frequency is where the 220ohm resister is happy and enough magnetic field is present in the chokes to provide an high voltage field in them. The beauty of it is that if phased correctly the diode will switch between high and low impedance. The true schematic is also below.