Reference Reading list We are looking for docs that easily detail
- best instruction to make the tanks
diagram on tank construction
Best Way to recycle tank and medium
AcknowledgmentsSupport for this work was provided by the EU FP6 RTNProject HyTRAIN; Hydrogen Storage Research Training Net-work.Figs. 1–5reprinted from indicated references with kindpermission of the Elsevier and International Journal of Hydro-gen Energy are acknowledged.
References[1]Ogden JM.
Developing an infrastructure for hydrogen vehicles: aSouthern California case study. Int J Hydrogen Energy 1999;24(
8):709–30.
[2]Dogan B.
Hydrogen storage tank systems and materials selection for transport applications. ASME Conference PVP2006- ICPVT-11,Vancouver, Canada, July 23–27, 2006, Conference Proceedings CD,Track: Materials and Fabrication, Session: Materials for HydrogenService, Paper No. 93868, pp. 1–8.
[3]Weast RC, Astle MJ, Beyer WH.
CRC handbook of chemistry and physics. 64th ed., Boca Raton, FL: CRC Press; 1983.
[4]Trudeau ML.
Advanced materials for energy storage. MRS Bull1999;24:23–6.
[5]DOE:
US Department of Energy. Website:http://www.doe.gov
.[6]Schulz R, Huot J, Liang G, Boily S, Lalande G, Denis MC. et al.
Recent development in the applications of nanocrystalline materials to hydrogen technologies. Mater Sci Eng A 1999;267:240.
[7]Darkrim FL, Malbrunot P, Tartaglia GP.
Review of hydrogen storageby adsorption in carbon nanotubes. Int J Hydrogen Energy 2002;27:193–202.
[8]Hirscher M, Becher M, Haluska M, Zeppelin F, Chen X, Dettlaff-Weglikowska U. et al.
Are carbon nanostructures an efficient hydrogenstorage medium?. J Alloys Compds 2003;356–357:433–7.
[9]Hirscher M, Becher M.
Hydrogen storage in carbon nanotubes.J Nanosci Nanotech 2003;3(1–2):3–17.
[10]David E.
An overview of advanced materials for hydrogen storage.J Mater Process Technol 2005;162–163:169–77.
[11]Zhou L.
Progress and problems in hydrogen storage methods. RenewSustain Energy Rev 2005;9:395–408.
[12]Schlapbach L, Züttel A.
Hydrogen-storage materials for mobile applications. Nature 2001;414:353–8.
[13]Zuttel A.
Materials for hydrogen storage. Mater Today 2003; 24–33.
[14]Zhou L, Zhou Y, Sun Y.
Studies on the mechanism and capacityof hydrogen uptake by physisorption-based materials. Int J HydrogenEnergy 2006;31(2):259–64.
[15]Grochala W, Edwards PP.
Thermal decomposition of the non-interstitialhydrides for the storage and production of hydrogen. Chem Rev2004;104:1283–315.
[16]Eberle U, Arnold G, Helmholt RV.
Hydrogen storage inmetal—hydrogen systems and their derivatives. J Power Sour2006;154(2):456–60.
[17]Latroche M.
Structural and thermodynamic properties of metallichydrides used for energy storage. J Phys Chem Solids 2004;65:517–22.
[18]HyTRAIN:
Hydrogen Storage Research Training Network, EC-MRTN-CT-2004-512443. Website:
http://www.imr.salford.ac.uk
.[19]Zaluska A, Zaluski L, Ström-Olsen JO.
Structure, catalysis and atomicreactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage. Appl Phys A 2001;72:157–65.
[20]Imamura H, Masanari K, Kusuhara M, Katsumoto H, Sumi T, Sakata Y.
High hydrogen storage capacity of nanosized magnesium synthesizedby high energy ball-milling. J Alloys Compds 2005;386:211–6.
[21]Zaluski L, Zaluska A, Ström-Olsen JO.
Nanocrystalline metal hydrides.J Alloys Compds 1997;253–254:70–9.
[22]Zhu M, Wang H, Ouyang LZ, Zeng MQ.
Composite structure andhydrogen storage properties in Mg-based alloys. Int J Hydrogen Energy2006;31(2):251–57.
[23]Wiswall R.
Topics in applied physics. Hydrogen Met II 1978;29:209.
[24]Fukai Y.
The metal–hydrogen system, basic bulk properties. Springerseries in materials science, 1993.
[25]Zaluska A, Zaluski L, Ström-Olsen JO.
Nanocrystalline magnesium forhydrogen storage. J Alloys Compds 1999;288:217–25.
[26]Barkhordarian G, Klassen T, Bormann R.
Effect of Nb2O5content onhydrogen reaction kinetics of Mg. J Alloys Compds 2004;364:242–6.
[27]Bogdanovic B, Bohmhamme K, Christ B, Reiser A, Schlichte K, VehlenR. et al.
Thermodynamic investigation of the magnesium–hydrogensystem. J Alloys Compds 1999;282:84–92.
[28]Jung KS, Lee EY, Lee KS.
Catalytic effects of metal oxide onhydrogen absorption of magnesium metal hydride. J Alloys Compds2005;421(1–2):179–84.
[29]Zhu M, Zhu WH, Chung CY, Chea ZX, Lia ZX.
Microstructure and hydrogen absorption properties of nano-phase composite prepared bymechanical alloying of MmNi (CoAlMn) and Mg. J Alloys Compds1999;293–295:531–5.
[30]Guoxian L, Erde W, Shoushi F.
Hydrogen absorption and desorption characteristics of mechanically milled Mg–35wt% FeTi
1.2powders.J Alloys Compds 1995;223:111–4.
[31]Bouaricha S, Dodelet JP, Guay D, Huot J, Boily S, Schulz R.
Hydriding behavior of Mg–Al and leached Mg–Al compounds prepared by high-energy ball-milling. J Alloys Compds 2000;297:282–93.
[32]Bououdina M, Guo ZX.
Comparative study of mechanical alloyingof (Mg:Al) and (Mg:Al:Ni) mixtures for hydrogen storage. J AlloysCompds 2002;336:222–31.B. Sakintuna et al./International Journal of Hydrogen Energy 32 (2007) 1121–11401137
[33]Wang P, Wang A, Zhang H, Ding B, Hu Z.
Hydriding properties of a mechanically milled Mg–50wt% ZrFe1.4Cr0.6composite. J AlloysCompds 2000;297:240–5.
[34]Song MY, Bobet J-L, Darriet B.
Improvement in hydrogen sorptionproperties of Mg by reactive mechanical grinding with Cr2O3, Al2O3and CeO2. J Alloys Compds 2002;340:256–62.
[35]Tran NE, Lambrakos SG, Imam MA.
Analyses of hydrogen sorptionkinetics and thermodynamics of magnesium–misch metal alloys.J Alloys Compds 2006;407:240–8.
[36]Wang P, Zhang HF, Ding BZ, Hu ZQ.
Direct hydrogenation of Mgand decomposition behavior of the hydride formed. J Alloys Compds2000;313:209–13.
[37]Gross KJ, Spatz P, Züttel A, Schlapbach L.
Mechanically milled Mg composites for hydrogen storage: the transition to a steady statecomposition. J Alloys Compds 1996;240:206–13.
[38]Gross KJ, Chartouni D, Leroy E, Züttel A, Schlapbach L.
Mechanically milled Mg composites for hydrogen storage: the relationship betweenmorphology and kinetics. J Alloys Compds 1998;269:259–70.
[39]Li Q, Chou K-C, Xu K-D, Jiang L-J, Lin Q, Lin G-W, Lu X-G,Zhang J-Y.
Hydrogen absorption and desorption characteristics in theLa0.5Ni1.5Mg17prepared by hydriding combustion synthesis. Int JHydrogen Energy 2006;31(4):497–503.
[40]Liang G, Boily S, Huot J, Neste AV, Schulz R.
Hydrogen absorptionproperties of a mechanically milled Mg–50wt.% LaNi
5composite.J Alloys Compds 1998;268(1–2):302–7.
[41]Chen Y, Wu C-Z, Wang P, Cheng H-M.
Structure and hydrogen storageproperty of ball-milled LiNH2/MgH2mixture. Int J Hydrogen Energy2006, in press.
[42]Xiong Z, Wu G, Hu J, Chen P.
Ternary imides for hydrogen storage.Adv Mater 2004;16(17):1522–5.
[43]Reiser A, Bogdanovic B, Schlichte K.
The application of Mg-based metal-hydrides as heat energy storage systems. Int J Hydrogen Energy2000;25:425–30.[44]Luo W. (LiNH2–MgH2): a viable hydrogen storage system. J AlloysCompds 2004;381:284–7.
[45]Chen P, Xiong Z, Luo J, Lin J, Tan KL.
Interaction of hydrogen with metal nitrides and imides. Nature 2002;420:302–4.
[46]Wang P, Wang AM, Zhang HF, Ding BZ, Hu ZQ.
Hydrogenation characteristics of Mg–TiO (rutile) composite. J Alloys Compds2000;313:218–23.
[47]Davidson DJ, Raman SS Sai, Srivastava ON.
Investigation on thesynthesis, characterization and hydrogenation behaviour of new Mg-based composite materials Mg–xwt% MmNiFe prepared throughmechanical alloying. J Alloys Compds 1999;292:194–201.
[48]Dehouche Z, Djaozandry R, Huot J, Boily S, Goyette J, BoseTK. et al.
Influence of cycling on the thermodynamic and structureproperties of nanocrystalline magnesium based hydride. J AlloysCompds 2000;305:264–71.
[49]Bogdanovic B, Reiser A, Schlichte K, Spliethoff B, Tesche B.
Thermodynamics and dynamics of the Mg–Fe–H system and itspotential for thermochemical thermal energy storage. J Alloys Compds2002;345:77–89.
[50]Liang G, Huot J, Boily S, Nestea AV, Schulz R.
Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milledMgH2–Tm (Tm5Ti, V, Mn, Fe and Ni) systems. J Alloys Compds1999;292(1–2):247–52.
[51]Fabing L, Lijun J, Jun D, Shumao W, Xiaopeng L, Feng Z.
Synthesisand hydrogenation properties of Mg–La–Ni–H system by reactivemechanical alloying. Int J Hydrogen Energy 2006, in press.
[52]Song MY, Kwon IH, Kwon SN, Park CG, Park HR, Bae J-S. P
reparationof hydrogen-storage alloy Mg–10wt% Fe2O3under various millingconditions. Int J Hydrogen Energy 2006;31:43–7.
[53]Raman SS Sai, Srivastava ON.
Hydrogenation behaviour of the newcomposite storage material Mg–xwt% CFMmNi5. J Alloys Compds1996;241:167–74.
[54]Liang G, Huot J, Boily S, Neste AV, Schulz R.
Hydrogen storage properties of the mechanically milled MgH2–V nanocomposite. J AlloysCompds 1999;291:295–9.
[55]Dehouche Z, Klassen T, Oelerich W, Goyette J, Bose TK, Schulz R.
Cycling and thermal stability of nanostructured MgH2–Cr2O3composite for hydrogen storage. J Alloys Compds 2002;347:319–23.
[56]Hanada N, Ichikawa T, Fuji H.
Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydrideMgH2prepared by mechanical milling. J Phys Chem B 2005;109:7188–94.
[57]Oelerich W, Klassen T, Bormann T.
Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials.J Alloys Compds 2001;315:237–42.
[58]Huot J, Liang G, Boily S, Neste AV, Schulz R.
Structural study andhydrogen sorption kinetics of ball-milled magnesium hydride. J AlloysCompds 1999;293–295:495–500.
[59]Leng HY, Ichikawa T, Isobe S, Hino S, Hanada N, Fujii H.
Desorption behaviours from metal–N–H systems synthesized by ball milling.J Alloys Compds 2005;404–406:443–7.
[60]Gennari FC, Castra FJ, Urretavizcaya G, Meyer G.
Catalytic effect of Ge on hydrogen desorption from MgH2. J Alloys Compds 2002;334:277–84.
[61]Reule H, Hirscher M, Weißhardt A, Krönmuller H.
Hydrogen desorption properties of mechanically alloyed MgH2 composite materials. J AlloysCompds 2000;305:246–52.
[62]Holtz RL.
Basic user’s guide for NRL 6323 hydrogen storage system,1996.
[63]Friedlmeier G, Groll M.
Experimental analysis and modeling of the hydriding kinetics of Ni-doped and pure Mg. J Alloys Compds1997;253–254:550–5.
[64]Andreasen A, Vegge T, Pedersen AS. C
ompensation effect in thehydrogenation/dehydrogenation kinetics of metal hydrides. J Phys ChemB 2005;109:3340–4.
[65]Chen J, Dou SX, Liu HK.
Crystalline Mg2Ni obtained by mechanicalalloying. J Alloys Compds 1996;244:184–9.
[66]Zaluska A, Zaluski L, Strom-Olsen JO.
Synergy of hydrogen sorptionin ball-milled hydrides of Mg and Mg2Ni. J Alloys Compds 1999;289:197–206.
[67]Aoyagi H, Aoki K, Masumoto T.
Effect of ball milling on hydrogenabsorption properties of FeTi, Mg2Ni and LaNi5. J Alloys Compds1995;231:804–9.
[68]Wagemans RWP, Lenth JHV, Jongh PE de, Dillen AJV, Jong KP de.H
ydrogen storage in magnesium clusters: quantum chemical study.J Am Chem Soc 2005;127:16675–80.
[69]Hong T-W.
Dehydrogenation properties of nano-amorphous Mg2NiHxby hydrogen induced mechanical alloying. J Alloys Compds2000;312:60–7.
[70]Tessier P, Enoki H, Bououdina M, Akiba
E. Ball-milling of Mg2Niunder hydrogen. J Alloys Compds 1998;268:285–9.
[71]Huot J, Akiba E, Takada T.
Mechanical alloying of Mg–Ni compoundsunder hydrogen and inert atmosphere. J Alloys Compds 1995;231:815–9.
[72]Chen Y, Williams JS.
Formation of metal hydrides by mechanical alloying. J Alloys Compds 1995;217:181–4.
[73]Orimo S-I, Fujii H.
Effects of nanometer-scale structure on hydriding properties of Mg–Ni alloys: a review. Intermetallics 1998;6:185–92.
[74]Abdellaoui M, Cracco D, Percheron-Guegan A.
Structuralcharacterization and reversible hydrogen absorption properties of Mg2Ni rich nanocomposite materials synthesized by mechanicalalloying. J Alloys Compds 1998;268:233–40.
[75]Barkhordarian G, Klassen T, Bormann R.
Kinetic investigation of the effect of milling time on the hydrogen sorption reaction of magnesium catalyzed with different Nb2O5contents. J Alloys Compds2006;407:249–55.
[76]Holtz RL, Imam MA.
Hydrogen storage characteristics of ball-milled magnesium–nickel and magnesium–iron alloys. J Mater Sci1999;34:2655–63.
[77]Higuchi K, Kajioka H, Toiyama K, Fujii H, Orimo S, Kikuchic Y.In situ
study of hydriding–dehydriding properties in some Pd/Mg thinfilms with different degree of Mg crystallization. J Alloys Compds1999;293–295:484–9.
[78]Akyildiz H, Özenba¸s M, Öztürk T.
Hydrogen absorption in magnesiumbased crystalline thin films. Int J Hydrogen Energy 2006;31(10):1379–83.
[79]Higuchi K, Yamamoto K, Kajioka H, Toiyama K, Honda M, Orimo S.et al.
Remarkable hydrogen storage properties in three-layeredPd/Mg/Pd thin films. J Alloys Compds 2002;330–332:526–30.
[80]Imamura H, Sakasai N, Kajii Yi.
Hydrogen absorption of Mg-based composites prepared by mechanical milling: factors affecting itscharacteristics. J Alloys Compds 1996;232:218–23.
[81]Shang CX, Guo ZX.
Effect of carbon on hydrogen desorption andabsorption of mechanically milled MgH2. J Power Sources 2004;129:73–80.
[82]Vija R, Sundaresan R, Maiya MP, Murthy SS.
Comparative evaluation of Mg–Ni hydrogen absorbing materials prepared by mechanical alloying.Int J Hydrogen Energy 2005;30:501–8.[83]Han SS, Goo NH, Lee KS. Effects of sintering on composite metalhydride alloy of Mg 2Ni and TiNi synthesized by mechanical alloying.J Alloys Compds 2003;360(1–2):243–9.
[84]Orimo S, Fujii H.
Materials science of Mg–Ni-based new hydrides.Appl Phys A 2001;72:167–86.
[85]Sato T, Blomqvist H, Noreus D.
Attempts to improve Mg2 Ni hydrogenstorage by aluminium addition. J Alloys Compds 2003;356–357:494–6.[86]Zaluski L, Zaluska A, Ström-Olsen JO. Hydrogen absorption innanocrystalline Mg
2Ni formed by mechanical alloying. J AlloysCompds 1995;217:245–9.
[87]Singh AK, Singh AK, Srivastava ON.
On the synthesis of the Mg2Nialloy by mechanical alloying. J Alloys Compds 1995;227:63–8.
[88]Abdellaoui M, Mokbli S, Cuevas F, Latroche M, Guegan A Percheron,Zarrouk H.
Structural, solid–gas and electrochemical characterization of Mg 2Ni-rich and MgxNi100 amorphous-rich nanomaterials obtainedby mechanical alloying. Int J Hydrogen Energy 2006;31(2):247–50.
[89]Liang G, Boily S, Huot J, Neste AV, Schulz R.
Mechanical alloyingand hydrogen absorption properties of the Mg–Ni system. J AlloysCompds 1998;267:302–6.
[90]Terzieva M, Khrussanova M, Peshev P, Radev D.
Hydriding anddehydriding characteristics of mixtures with a high magnesium contentobtained by sintering and mechanical alloying. Int J Hydrogen Energy1995;20(1):53–8.
[91]Terzieva M, Khrussanova M, Peshev P.
Hydriding and dehydridingcharacteristics of Mg–LaNi
5composite materials prepared bymechanical alloying. J Alloys Compds 1998;267:235–9.
[92]Haussermann U, Blomqvist H, Noreus D.
Bonding and stability of thehydrogen storage material Mg 2NiH4. Inorg Chem 2002;41:3684–92.
[93]Zaluski L, Zaluska A, Tessier P, Ström-Olsen JO, Schulz R.
Catalyticeffect of Pd on hydrogen absorption in mechanically alloyed Mg 2Ni,LaNi5and FeTi. J Alloys Compds 1995;217:295–300.
[94]Aymard L, Ichitsubo M, Uchida K, Sekreta E, Ikazaki F.
Preparationof Mg 2 Ni base alloy by the combination of mechanical alloying andheat treatment at low temperature. J Alloys Compds 1997;259:L5–8.
:D[95]Tran NE, Imam MA, Feng CR.
Evaluation of hydrogen storagecharacteristics of magnesium–misch metal alloys. J Alloys Compds2003;359:225–9.
[96]Friedlmeier G, Manthey A, Wanner M, Grollm M. Cyclic stabilityof various application-relevant metal hydrides. J Alloys Compds1995;231(1–2):880–7.
[97]Dehouche Z, Djaozandry R, Goyette J, Bose TK.
Thermal cyclic chargeand discharge stability of nanocrystalline Mg
2Ni alloy. J Alloys Compds1999;288:312–8.
[98]Pedersen AS, Larsen B.
The storage of industrially pure hydrogen inmagnesium. Int J Hydrogen Energy 1993;18:279–300.
[99]Bouaricha S, Huot J, Guay D, Schulz R.
Reactivity during cycling of nanocrystalline Mg-based hydrogen storage compounds. Int J HydrogenEnergy 2002;27(9):909–13.
[100]Dehouche Z, Goyette J, Bose TK, Schulz R.
Moisture effect onhydrogen storage properties of nanostructured MgH2–V–Ti composite.Int J Hydrogen Energy 2003;28(9):983–8.
[101]Baer R, Zeiri Y, Kosloff R.
Hydrogen transport in nickel (111). PhysRev B 1997;55(16):952–74.
[102]Bloch J, Mintz MH.
Kinetics and mechanisms of metal hydrideformation—a review. J Alloys Compds 1997;253–254:529–41.
[103]Iwakura C, Nohara S, Zhang SG, Inoue H.
Hydriding and dehydridingcharacteristics of an amorphous Mg2Ni–Ni composite. J Alloys Compds1999;285:246–9.
[104]Liang G, Huot J, Boily S, Neste AV, Schulz R
. Hydrogen storageproperties of nanocrystalline Mg1.9Ti0.1 Ni made by mechanicalalloying. J Alloys Compds 1999;282:286–90.
[105]Zaluska A, Zaluski L.
New catalytic complexes for metal hydridesystems. J Alloys Compds 2005;404–406:706–11.
[106]Huot J, Swainson IP, Shulz R. Neutron diffraction study of lixiviatednanocrystalline Mg–Li compound. J Alloys Compds 1999;292:292–5.
[107]Liang G.
Synthesis and hydrogen storage properties of Mg-based alloys.J Alloys Compds 2004;370:123–8.[108]Züttel A, Wenger P, Rentsch S, Sudan P, Mauron Ph, Emmenegger Ch.LiBH4
a new hydrogen storage material. J Power Sources 2003;118:1–7.
[109]Kyoi D, Sato T, Rönnebro E, Kitamura N, Ueda A, Ito M. et al.A new ternary magnesium–titanium hydride Mg
7Ti
Hxwith hydrogendesorption properties better than both binary magnesium and titaniumhydrides. J Alloys Compds 2004;372:213–7.
[110]Bogdanovic B, Schwickardi M. Ti-doped NaAlH4
as a hydrogen-storage material—preparation by Ti-catalyzed hydrogenation of aluminum powder in conjunction with sodium hydride. Appl Phys A2001;72:221–3.
[111]Bogdanovic B, Scwickardi M.
Ti-doped alkali metal aluminiumhydrides as potential novel reversible hydrogen storage materials.J Alloys Compds 1997;253–254:1–9.
[112]Bogdanovic B, Brand RA, Marjanovic A, Schwickardi M, Tölle J.
Metal-doped sodium aluminium hydrides as potential new hydrogenstorage materials. J Alloys Compds 2000;302:36–58.
[113]Jensen CM, Gross KJ.
Development of catalytically enhanced sodiumaluminum hydride as a hydrogen-storage material. Appl Phys A2001;72:213–9.
[114]Zaluski L, Zaluska A, Ström-Olsen JO. Hydrogenation propertiesof complex alkali metal hydrides fabricated by mechano-chemicalsynthesis. J Alloys Compds 1999;290:71–8.
[115]Genma R, Okada N, Sobue T, Uchida H-H.
Mechanically milledalanates as hydrogen storage materials. Int J Hydrogen Energy2006;31(2):309–11.
[116]Sandrock G, Gross KJ, Thomas G, Jensen C, Meeker D, Takara S.
Engineering considerations in the use of catalyzed sodium alanates forhydrogen storage. J Alloys Compds 2002;330–332:696–701.
[117]Wang P, Jensen CM. Method for preparing Ti-doped NaAlH
4using Tipowder: observation of an unusual reversible dehydrogenation behavior.J Alloys Compds 2004;379:99–102.
[118]Sun D, Srinivasan SS, Kiyobayashi T, Kuriyama N, Jensen CM.
Rehydrogenation of dehydrogenated NaAlH4at low temperature andpressure. J Phys Chem B 2003;107:10176–9.
[119]Zidan RA, Takara S, Hee AG, Jensen CM.
Hydrogen cycling behaviorof zirconium and titanium–zirconium-doped sodium aluminum hydride.J Alloys Compds 1999;285:119–22.
[120]Zaluska A, Zaluski L, Ström-Olsen JO. Sodium alanates for reversiblehydrogen storage. J Alloys Compds 2000;298:125–34.
[121]Jensen CM, Zidan R, Mariels N, Hee A, Hagena C.
Advanced titaniumdoping of sodium aluminum hydride segue to a practical hydrogenstorage material. Int J Hydrogen Energy 1999;24:461–5.
[122]Bogdanovic B, Felderhoff M, Kaskel S, Pommerin A, Sclichte K,Schüth F.
Improved hydrogen storage properties of Ti-doped sodiumalanate using titanium nanoparticles as doping agents. Adv Mater2003;15(12):1012–5.
[123]Sandrock G, Gross KJ, Thomas G. Effect of Ti-catalyst content on thereversible hydrogen storage properties of the sodium alanates. J AlloysCompd: s 2002;339:299–308.
[124]Sun D, Kiyobayashi T, TakePooa HT, Kuriyama N, Jensen CM.
X-raydiffraction studies of titanium and zirconium doped NaAlH
4 elucidationof doping induced structural changes and their relationship to enhancedhydrogen storage properties. J Alloys Compds 2002;337:L8–L11.B. Sakintuna et al./International Journal of Hydrogen Energy 32 (2007) 1121
–1140 1139
[125]Gross KJ, Guthrie S, Takara S, Thomas G. In situ
X-ray diffractionstudy of the decomposition of NaAlH4. J Alloys Compds 2000;297:270–81.
[126]Chaudhuri S, Muckerman JT.
First principles study of Ti-catalyzedhydrogen chemisorption on an Al surface: a critical first stepfor reversible hydrogen storage in NaAlH 4. J Phys Chem B2005;109(15):6952–7.
[127]Fichtner M, Fuhr O, Kircher O, Rothe J. Small Ti clusters for catalysisof hydrogen exchange in NaAlH 4. Nanotechnology 2003;14:778–85.
[128]Thomas GJ, Gross KJ, Yang NYC, Jensen C.
Microstructural character-ization of catalyzed NaAlH4. J Alloys Compds 2002;330–332:702–7.
[129]Huot J, Boily S, Güther V, Schulz R. Synthesis of Na
3AlH 6 andNa2 LiAlH6 by
mechanical alloying. J Alloys Compds 1999;383:304–6.
[130]Kircher O, Fichtner M.
Kinetic studies of the decomposition of NaAlH4doped with a Ti-based catalyst. J Alloys Compds 2005;404–406:339–42.
[131]Filinchuk YE, Yvon K.
Boron-induced hydrogen localization in thenovel metal hydride LaNi3 BHx(x=2.5. 3.0). Inorg Chem 2005;44:4398–406.
[132]Hu YH, Ruckenstein E.
Hydrogen storage of Li2NH prepared byreacting Li with NH3. Ind Eng Chem Res 2006;45(1):182–6.
[133]Ichikawa T, Isobe S, Hanada N, Fujii H.
Lithium nitride for reversible hydrogen storage. J Alloys Compds 2004;365:271–6.
[134]Hu HH, Ruckenstein E.
Highly effective Li2O/Li3N with ultrafastkinetics for H2storage. Ind Eng Chem Res 2004;43:2464–7.
[135]Hu YH, Ruckenstein E.
H2storage in Li3N. Temperature programmedhydrogenation and dehydrogenation. Ind Eng Chem Res 2003;42:5135–9.
[136]Pinkerton FE, Meisner GP, Meyer MS, Balogh MP, Kundrat MD.
Hydrogen desorption exceeding ten weight percent from the newquaternary hydride LiBN
2H8. J Phys Chem B 2005;109:6–8.
[137]Vajo JJ, Skeith SL, Mertens F. Reversible storage of hydrogen indestabilized LiBH
4. J Phys Chem B 2005;109(9):3719–22.
[138]Morioka H, Kakizaki K, Chung S-C, Yamada A.
Reversible hydrogendecomposition of KAlH4. J Alloys Compds 2003;353:310–4.
[139]Dafert FW, Miklauz R.
Uber einige neue Verbindungen von Stick-stoff and Wasserstoff mit Lithium. Diese Sitzungsberichte Bd. CXVIII, July1910. p. 981–96.
[140]Ruff O, Georges H. Uber das Lithium-imid und einige Bemerkungenzu der Arbeit von Dafert und Miklauz:
Über einige neue Verbindungenvon Stickstoff und Wasserstoff mit Lithium. Anorganischen undelektrochemischen Laboratorium der Kgt. Techn. Hochschule Danzig,February 13, 1911. p. 502–6.
[141]Hu YH, Ruckenstein E.
Ultrafast reaction between LiH and NH 3duringH2storage in Li3N. J Phys Chem A 2003;107(46):9737–9.
[142]Orimo S, Nakamori Y, Kitahara G, Miwa K, Ohba N, Noritake T.et al.
Destabilization and enhanced dehydriding reaction of LiNH 2: anelectronic structure viewpoint. Appl Phys A 2004;79:1765–7.
[143]Nakamori Y, Orimo S-I.
Destabilization of Li-based complex hydrides.J Alloys Compds 2004;370:271–5.
[144]Nakamori Y, Orimo S.
Li–N based hydrogen storage materials. MaterSci Eng B 2004;108:48–50.
[145]Fakioglu E, Yürüm Y, Veziroglu TN.
A review of hydrogen storagesystems based on boron and its compounds. Int J Hydrogen Energy2004;29:1371–6.
:)[146]Schlesinger HI, Brown HC. J Am
Chem Soc 1940;62:3429.
[147]Stasinevich DS, Egorenko GA. J Russ Inorg Chem 1968;13(3):341–3.
[148]Züttel A, Rentsch S, Fischer P, Wenger P, Sudan P, Mauron PL.et al.
Hydrogen storage properties of LiBH 4. J Alloys Compds2003;356–357:515–20.
[149]Zaluska A, Zaluski L, Ström-Olsen JO.
Lithium–beryllium hydrides:the lightest reversible metal hydrides. J Alloys Compds 2000;307:157–66.
[150]Vucht JV, Kuijpers FA, Bruning H. Philips Res Rep 1970;25:133.
[151]Reilly JJ, Wiswall RH.
Formation and properties of iron titaniumhydride. Inorg Chem 1974;13(1):218–22.
[152]Reilly JJ, Sandrock GD.
Hydrogen storage in metal hydrides. Sci Am1980;242(2):118–9.
:cool:[153]Goo NH, Hirscher M.
Synthesis of the nanocrystalline MgS itsinteraction with hydrogen. J Alloys Compds 2005;404–406:503–6.
[154]Iosub V, Latroche M, Joubert J-M, Percheron-Guégan A. Optimisationof MmNi 5−xSnx(Mm=La, Ce, Nd and Pr, 0.27<x <0.5)compositions as hydrogen storage materials. Int J Hydrogen Energy2006;31:101–8.
[155]Bououdina M, Soubeyroux JL, Rango P de, Fruchart D.
Phasestability and neutron diffraction studies of the Laves phase compoundsZr( Cr 1 − x Mo x) 2 with 0.0<x <0.5 and their hydrides. Int J HydrogenEnergy 2000;25:1059–68.
[156]Chen Y, Sequeira CAC, Chen C, Wang X, Wang Q.
Metal hydride bedsand hydrogen supply tanks as minitype PEMFC hydrogen sources. IntJ Hydrogen Energy 2003;28:329–33.
[157]Dehouche Z, Grimard N, Laurencelle F, Goyette J, Bose TK.
Hydridealloys properties investigations for hydrogen sorption compressor.J Alloys Compds 2005;399:224–36.
[158]Challet S, Latroche M, Percheron-Guegan A, Heurtaux F.Crystallographic and thermodynamic study of La
0.55Y0.45Ni5.
H2,a candidate system for hydrogen buffer tanks. J Alloys Compds2005;404–406:85–8.
:cool:[159]Muthukumar P, Maiya MP, Murthy SS.
Experiments on a metalhydride-based hydrogen storage device. Int J Hydrogen Energy 2005;30:1569–81.
:cool:[160]Wang X, Chen R, Zhang Y, Chen C, Wang Q.
Hydrogen storage alloysfor high-pressure suprapure hydrogen compressor. J Alloys Compds2006;420(1–2):322–5.
[161]Santos DS dos, Bououdina M, Fruchart D. Structural and hydrogenationproperties of an 80wt% TiCr
1.1 V 0.9 –20wt% LaNi 5composite material.Int J Hydrogen Energy 2003;28:1237–41.
[162]Liu Y, Pan H, Gao M, Li G, Sun X, Lei Y.
Investigation on thecharacteristics of La 0.7Mg0.3Ni2.65Mn0.1Co0.75+x(x=0.00.0.85)metal hydride electrode alloys for Ni/MH batteries. Part I: phasestructures and hydrogen storage. J Alloys Compds 2005;387:147–53.
[163]Bououdina M, Enoki H, Akiba E.
The investigation of theZr 1−yTiy(Cr1−xNix)2–H2system phase composition analysis andthermodynamic properties. J Alloys Compds 1998;281:290–300.
[164]Kojima Y, Kawai Y, Towata S-I, Matsunaga T, Shinozawa T, KimbaraM. Development of metal hydride with high dissociation pressure.J Alloys Compds 2005, in press.
[165]Zaluski L, Zaluska A, Tessier P, Strörn-Olsen JO, Schulz R.
Effects of relaxation on hydrogen absorption in Fe–Ti produced by ball-milling.J Alloys Compds 1995;227:53–7.[166]Kuriiwa T, Tamura T, Amemiya T, Fuda T, Kamegawa A, Takamura H.et al. New V-based alloys with high protium absorption and desorptioncapacity. J Alloys Compds 1999;293–295:433–6.
[167]Seo C-Y, Kim J-H, Lee PS, Lee J-Y.
Hydrogen storage properties of vanadium-based B.C.C. solid solution metal hydrides. J Alloys Compds2003;348:252–7.
[168]Takasaki A, Kelton KF. Hydrogen storage in Ti-based quasicrystalpowders produced by mechanical alloying. Int J Hydrogen Energy2006;31(2):183–90.
[169]Okada M, Kuriiwa T, Tamura T, Takamura H, Kamegawa A.Ti–V–Cr
B.C.C. alloys with high protium content. J Alloys Compds2002;330–332:511–6.
[170]Yu XB, Yang ZX, Feng SL, Wu Z, Xu NX.
Influence of Fe addition onhydrogen storage characteristics of Ti–V-based alloy. Int J HydrogenEnergy 2006;31(9):1176–81.
[171]Nomura K, Akiba E. H2 Absorbing–desorbing characterization of theTi–V–Fe alloy system. J Alloys Compds 1995;231:513–7.
[172]Yu XB, Wu Z, Xia BJ, Xu NX.
Enhancement of hydrogen storagecapacity of Ti–V–Cr–Mn BCC phase alloys. J Alloys Compds2004;372:272–7.
[173]Gao L, Chen C, Chen L, Wang X, Zhang J. et al.
Hydriding/dehydridingbehaviors of La 1.8Ca02Mg14Ni3alloy modified by mechanical ball-milling under argon. J Alloys Compds 2005;399:178–82.
[174]Lu D, Li W, Hu S, Xiao F, Tang R.
Uniform nanocrystalline AB 5-typehydrogen storage alloy: preparation and properties as negative materialsof Ni/MH battery. Int J Hydrogen Energy 2006;31(6):678–82. 1140 B. Sakintuna et al./International Journal of Hydrogen Energy 32 (2007) 1121–1140
[175]Corre S, Bououdina M, Fruchart D, Adachi G-Y. Stabilisation of highdissociation pressure hydrides of formula La
1−xCexNi5 with carbonmonoxide. J Alloys Compds 1998;275(277):99–104.
[176]Broom DP, Kemali M, Ross DK.
Magnetic properties of commercialmetal hydride battery materials. J Alloys Compds 1999;293–295:255–9.[177]Joubert J-M, Cerny R, Latroche M, Percheron-Guegan A, SchmittB. Hydrogenation of LaNi 5studied by in situ synchrotron powderdiffraction. Acta Mater 2006;54:713–9.
[178]Joubert J-M, Latroche M, Cerny R, Percheron-Guegan A, Yvon K.
Hydrogen cycling induced degradation in LaNi 5-type materials. J AlloysCompds 2002;330–332:208–14.
[179]Joubert J-M, Cerny R, Latroche M, Leroy M, Guenee L, Percheron-Guegan A. et al.
A structural study of the homogeneity domain of LaNi5. J Solid State Chem 2002;166:1–6.
[180]Joubert J-M, Latroche M, Cerny R, Bowman RC, Percheron-GueganA, Yvon K.
Crystallographic study of LaNi5−xSn2−x(0.2<x <0.5)compounds and their hydrides. J Alloys Compds 1999;293–295:124–9.
[181]Demircan A, Demiralp M, Kaplan Y, Mat MD, Veziroglu TN.
Experimental and theoretical analysis of hydrogen absorption inLaNi
5 –H2 reactors. Int J Hydrogen Energy 2005;30:1437–46.
[182]Chen Y, Sequeira CAC, Chen C, Wang X, Wang Q.
Metal hydride bedsand hydrogen supply tanks as minitype PEMFC hydrogen sources. IntJ Hydrogen Energy 2003;28:329–33.
[183]Liu FJ, Suda S.
Properties and characteristics of fluorinated hydridingalloys. J Alloys Compds 1995;231:742–50.
[184]Wang XL, Suda S.
Surface characteristics of fluorinated hydridingalloys. J Alloys Compds 1995;231:380–6.
[185]Suda S, Sun Y-M, Liu B-H, Zhou Y, Morimitsu S, Arai K. et al.
Catalytic generation of hydrogen by applying fluorinated-metal hydridesas catalysts. Appl Phys A 2001;72:209–12.
[186]Kikkinides ES, Georgiadis MC, Stubos AK.
On the optimizationof hydrogen storage in metal hydride beds. Int J Hydrogen Energy2006; 31(6):737–51
[187 ]Bououdina M, Grant D, Walker G.
Review on hydrogen absorbing materials—structure, microstructure and thermodynamic properties. IntJ Hydrogen Energy 2006;31(2):177–82.
[188]Dantzer P.
Properties of intermetallic compounds suitable for hydrogenstorage applications. Mater Sci Eng A 2002;
329–331:313–20.
[189]Bavykin DV, Lapkin AA, Plucinski PK, Friedrich JM, Walsh FC.
Reversible storage of molecular hydrogen by sorption into multilayeredTiO 2 nanotubes. J Phys Chem B 2005;109:19422–7
:)Note
Low operation pressure:
Fraunhofer IFAM‘s hydride
materials store hydrogen at moderate and relatively easy to
handle pressures between 8 and 30 bar, which is typically the
outlet pressure of electrolyzers. Therefore, a costly and diffcult
to operate hydrogen compressor can be avoided