Full article:
http://www.ineffableisland.com/2014/01/nikola-tesla-dream-come-true-wireless.html
clip:
"Duke University researchers have demonstrated the feasibility of wireless power transfer using low-frequency magnetic fields over distances much larger than the size of the transmitter and receiver.
Each side of each constituent cube of the “superlens” is set with a long, spiraling copper coil. The end of each coil is connected to its twin on the reverse side of the wall.
he advance comes from a team of researchers in Duke’s Pratt School of Engineering, who used metamaterials to create a “superlens” that focuses magnetic fields. The superlens translates the magnetic field emanating from one power coil onto its twin nearly a foot away, inducing an electric current in the receiving coil.
The experiment was the first time such a scheme has successfully sent power safely and efficiently through the air with an efficiency many times greater than what could be achieved with the same setup minus the superlens."
http://www.ineffableisland.com/2014/01/nikola-tesla-dream-come-true-wireless.html
clip:
"Duke University researchers have demonstrated the feasibility of wireless power transfer using low-frequency magnetic fields over distances much larger than the size of the transmitter and receiver.
Each side of each constituent cube of the “superlens” is set with a long, spiraling copper coil. The end of each coil is connected to its twin on the reverse side of the wall.
he advance comes from a team of researchers in Duke’s Pratt School of Engineering, who used metamaterials to create a “superlens” that focuses magnetic fields. The superlens translates the magnetic field emanating from one power coil onto its twin nearly a foot away, inducing an electric current in the receiving coil.
The experiment was the first time such a scheme has successfully sent power safely and efficiently through the air with an efficiency many times greater than what could be achieved with the same setup minus the superlens."