Metal Hydride Tanks DIY


Metal Hydride Tanks DIY
« on August 4th, 2014, 03:30 PM »Last edited on August 4th, 2014, 10:08 PM
Metal Hydride Tanks  DIY

  • How to make tanks
    what material are best
    how to recycle them

Metal Hydride Materials for Solid Hydrogen Storage

Starting this very important one
Re: Metal Hydride Tanks DIY
« Reply #1, on August 4th, 2014, 10:39 PM »Last edited on August 5th, 2014, 12:32 AM
Reference Reading list

We are looking for docs that easily detail

  • best  instruction to make the tanks
    diagram on tank construction
    Best Way to recycle tank and medium

Support for this work was provided by the EU FP6 RTNProject HyTRAIN; Hydrogen Storage Research Training Net-work.Figs. 1–5reprinted from indicated references with kindpermission of the Elsevier and International Journal of Hydro-gen Energy are acknowledged.

[1]Ogden JM. Developing an infrastructure for hydrogen vehicles: aSouthern California case study. Int J Hydrogen Energy 1999;24(8):709–30.

[2]Dogan B. Hydrogen storage tank systems and materials selection for transport applications. ASME Conference PVP2006- ICPVT-11,Vancouver, Canada, July 23–27, 2006, Conference Proceedings CD,Track: Materials and Fabrication, Session: Materials for HydrogenService, Paper No. 93868, pp. 1–8.

[3]Weast RC, Astle MJ, Beyer WH. CRC handbook of chemistry and physics. 64th ed., Boca Raton, FL: CRC Press; 1983.

[4]Trudeau ML. Advanced materials for energy storage. MRS Bull1999;24:23–6.

[5]DOE: US Department of Energy. Website:

.[6]Schulz R, Huot J, Liang G, Boily S, Lalande G, Denis MC. et al.Recent development in the applications of nanocrystalline materials to hydrogen technologies. Mater Sci Eng A 1999;267:240.

[7]Darkrim FL, Malbrunot P, Tartaglia GP. Review of hydrogen storageby adsorption in carbon nanotubes. Int J Hydrogen Energy 2002;27:193–202.

[8]Hirscher M, Becher M, Haluska M, Zeppelin F, Chen X, Dettlaff-Weglikowska U. et al. Are carbon nanostructures an efficient hydrogenstorage medium?. J Alloys Compds 2003;356–357:433–7.

[9]Hirscher M, Becher M. Hydrogen storage in carbon nanotubes.J Nanosci Nanotech 2003;3(1–2):3–17.

[10]David E. An overview of advanced materials for hydrogen storage.J Mater Process Technol 2005;162–163:169–77.

[11]Zhou L. Progress and problems in hydrogen storage methods. RenewSustain Energy Rev 2005;9:395–408.

[12]Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature 2001;414:353–8.

[13]Zuttel A. Materials for hydrogen storage. Mater Today 2003; 24–33.

[14]Zhou L, Zhou Y, Sun Y. Studies on the mechanism and capacityof hydrogen uptake by physisorption-based materials. Int J HydrogenEnergy 2006;31(2):259–64.

[15]Grochala W, Edwards PP. Thermal decomposition of the non-interstitialhydrides for the storage and production of hydrogen. Chem Rev2004;104:1283–315.

[16]Eberle U, Arnold G, Helmholt RV. Hydrogen storage inmetal—hydrogen systems and their derivatives. J Power Sour2006;154(2):456–60.

[17]Latroche M. Structural and thermodynamic properties of metallichydrides used for energy storage. J Phys Chem Solids 2004;65:517–22.

[18]HyTRAIN: Hydrogen Storage Research Training Network, EC-MRTN-CT-2004-512443. Website:

.[19]Zaluska A, Zaluski L, Ström-Olsen JO. Structure, catalysis and atomicreactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage. Appl Phys A 2001;72:157–65.

[20]Imamura H, Masanari K, Kusuhara M, Katsumoto H, Sumi T, Sakata Y.High hydrogen storage capacity of nanosized magnesium synthesizedby high energy ball-milling. J Alloys Compds 2005;386:211–6.

[21]Zaluski L, Zaluska A, Ström-Olsen JO. Nanocrystalline metal hydrides.J Alloys Compds 1997;253–254:70–9.

[22]Zhu M, Wang H, Ouyang LZ, Zeng MQ. Composite structure andhydrogen storage properties in Mg-based alloys. Int J Hydrogen Energy2006;31(2):251–57.

[23]Wiswall R. Topics in applied physics. Hydrogen Met II 1978;29:209.

[24]Fukai Y. The metal–hydrogen system, basic bulk properties. Springerseries in materials science, 1993.

[25]Zaluska A, Zaluski L, Ström-Olsen JO. Nanocrystalline magnesium forhydrogen storage. J Alloys Compds 1999;288:217–25.

[26]Barkhordarian G, Klassen T, Bormann R. Effect of Nb2O5content onhydrogen reaction kinetics of Mg. J Alloys Compds 2004;364:242–6.

[27]Bogdanovic B, Bohmhamme K, Christ B, Reiser A, Schlichte K, VehlenR. et al. Thermodynamic investigation of the magnesium–hydrogensystem. J Alloys Compds 1999;282:84–92.

[28]Jung KS, Lee EY, Lee KS. Catalytic effects of metal oxide onhydrogen absorption of magnesium metal hydride. J Alloys Compds2005;421(1–2):179–84.

[29]Zhu M, Zhu WH, Chung CY, Chea ZX, Lia ZX. Microstructure and hydrogen absorption properties of nano-phase composite prepared bymechanical alloying of MmNi (CoAlMn) and Mg. J Alloys Compds1999;293–295:531–5.

[30]Guoxian L, Erde W, Shoushi F. Hydrogen absorption and desorption characteristics of mechanically milled Mg–35wt% FeTi
1.2powders.J Alloys Compds 1995;223:111–4.

[31]Bouaricha S, Dodelet JP, Guay D, Huot J, Boily S, Schulz R. Hydriding behavior of Mg–Al and leached Mg–Al compounds prepared by high-energy ball-milling. J Alloys Compds 2000;297:282–93.

[32]Bououdina M, Guo ZX. Comparative study of mechanical alloyingof (Mg:Al) and (Mg:Al:Ni) mixtures for hydrogen storage. J AlloysCompds 2002;336:222–31.B. Sakintuna et al./International Journal of Hydrogen Energy 32 (2007) 1121–11401137

[33]Wang P, Wang A, Zhang H, Ding B, Hu Z. Hydriding properties of a mechanically milled Mg–50wt% ZrFe
1.4Cr0.6composite. J AlloysCompds 2000;297:240–5.

[34]Song MY, Bobet J-L, Darriet B. Improvement in hydrogen sorptionproperties of Mg by reactive mechanical grinding with Cr2O3, Al2O3and CeO2. J Alloys Compds 2002;340:256–62.

[35]Tran NE, Lambrakos SG, Imam MA. Analyses of hydrogen sorptionkinetics and thermodynamics of magnesium–misch metal alloys.J Alloys Compds 2006;407:240–8.

[36]Wang P, Zhang HF, Ding BZ, Hu ZQ. Direct hydrogenation of Mgand decomposition behavior of the hydride formed. J Alloys Compds2000;313:209–13.

[37]Gross KJ, Spatz P, Züttel A, Schlapbach L. Mechanically milled Mg composites for hydrogen storage: the transition to a steady statecomposition. J Alloys Compds 1996;240:206–13.

[38]Gross KJ, Chartouni D, Leroy E, Züttel A, Schlapbach L. Mechanically milled Mg composites for hydrogen storage: the relationship betweenmorphology and kinetics. J Alloys Compds 1998;269:259–70.

[39]Li Q, Chou K-C, Xu K-D, Jiang L-J, Lin Q, Lin G-W, Lu X-G,Zhang J-Y. Hydrogen absorption and desorption characteristics in theLa0.5Ni1.5Mg17prepared by hydriding combustion synthesis. Int JHydrogen Energy 2006;31(4):497–503.

[40]Liang G, Boily S, Huot J, Neste AV, Schulz R. Hydrogen absorptionproperties of a mechanically milled Mg–50wt.% LaNi
5composite.J Alloys Compds 1998;268(1–2):302–7.

[41]Chen Y, Wu C-Z, Wang P, Cheng H-M. Structure and hydrogen storageproperty of ball-milled LiNH2/MgH2mixture. Int J Hydrogen Energy2006, in press.

[42]Xiong Z, Wu G, Hu J, Chen P. Ternary imides for hydrogen storage.Adv Mater 2004;16(17):1522–5.

[43]Reiser A, Bogdanovic B, Schlichte K. The application of Mg-based metal-hydrides as heat energy storage systems. Int J Hydrogen Energy2000;25:425–30.[44]Luo W. (LiNH2–MgH2): a viable hydrogen storage system. J AlloysCompds 2004;381:284–7.

[45]Chen P, Xiong Z, Luo J, Lin J, Tan KL. Interaction of hydrogen with metal nitrides and imides. Nature 2002;420:302–4.

[46]Wang P, Wang AM, Zhang HF, Ding BZ, Hu ZQ. Hydrogenation characteristics of Mg–TiO (rutile) composite. J Alloys Compds2000;313:218–23.

[47]Davidson DJ, Raman SS Sai, Srivastava ON. Investigation on thesynthesis, characterization and hydrogenation behaviour of new Mg-based composite materials Mg–xwt% MmNiFe prepared throughmechanical alloying. J Alloys Compds 1999;292:194–201.

[48]Dehouche Z, Djaozandry R, Huot J, Boily S, Goyette J, BoseTK. et al. Influence of cycling on the thermodynamic and structureproperties of nanocrystalline magnesium based hydride. J AlloysCompds 2000;305:264–71.

[49]Bogdanovic B, Reiser A, Schlichte K, Spliethoff B, Tesche B.Thermodynamics and dynamics of the Mg–Fe–H system and itspotential for thermochemical thermal energy storage. J Alloys Compds2002;345:77–89.

[50]Liang G, Huot J, Boily S, Nestea AV, Schulz R. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milledMgH2–Tm (Tm5Ti, V, Mn, Fe and Ni) systems. J Alloys Compds1999;292(1–2):247–52.

[51]Fabing L, Lijun J, Jun D, Shumao W, Xiaopeng L, Feng Z. Synthesisand hydrogenation properties of Mg–La–Ni–H system by reactivemechanical alloying. Int J Hydrogen Energy 2006, in press.

[52]Song MY, Kwon IH, Kwon SN, Park CG, Park HR, Bae J-S. Preparationof hydrogen-storage alloy Mg–10wt% Fe2O3under various millingconditions. Int J Hydrogen Energy 2006;31:43–7.

[53]Raman SS Sai, Srivastava ON. Hydrogenation behaviour of the newcomposite storage material Mg–xwt% CFMmNi5. J Alloys Compds1996;241:167–74.

[54]Liang G, Huot J, Boily S, Neste AV, Schulz R. Hydrogen storage properties of the mechanically milled MgH2–V nanocomposite. J AlloysCompds 1999;291:295–9.

[55]Dehouche Z, Klassen T, Oelerich W, Goyette J, Bose TK, Schulz R.Cycling and thermal stability of nanostructured MgH2–Cr2O3composite for hydrogen storage. J Alloys Compds 2002;347:319–23.

[56]Hanada N, Ichikawa T, Fuji H. Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydrideMgH2prepared by mechanical milling. J Phys Chem B 2005;109:7188–94.

[57]Oelerich W, Klassen T, Bormann T. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials.J Alloys Compds 2001;315:237–42.

[58]Huot J, Liang G, Boily S, Neste AV, Schulz R. Structural study andhydrogen sorption kinetics of ball-milled magnesium hydride. J AlloysCompds 1999;293–295:495–500.

[59]Leng HY, Ichikawa T, Isobe S, Hino S, Hanada N, Fujii H. Desorption behaviours from metal–N–H systems synthesized by ball milling.J Alloys Compds 2005;404–406:443–7.

[60]Gennari FC, Castra FJ, Urretavizcaya G, Meyer G. Catalytic effect of Ge on hydrogen desorption from MgH2. J Alloys Compds 2002;334:277–84.

[61]Reule H, Hirscher M, Weißhardt A, Krönmuller H. Hydrogen desorption properties of mechanically alloyed MgH2 composite materials. J AlloysCompds 2000;305:246–52.

[62]Holtz RL. Basic user’s guide for NRL 6323 hydrogen storage system,1996.

[63]Friedlmeier G, Groll M. Experimental analysis and modeling of the hydriding kinetics of Ni-doped and pure Mg. J Alloys Compds1997;253–254:550–5.

[64]Andreasen A, Vegge T, Pedersen AS. Compensation effect in thehydrogenation/dehydrogenation kinetics of metal hydrides. J Phys ChemB 2005;109:3340–4.

[65]Chen J, Dou SX, Liu HK. Crystalline Mg
2Ni obtained by mechanicalalloying. J Alloys Compds 1996;244:184–9.

[66]Zaluska A, Zaluski L, Strom-Olsen JO. Synergy of hydrogen sorptionin ball-milled hydrides of Mg and Mg2Ni. J Alloys Compds 1999;289:197–206.

[67]Aoyagi H, Aoki K, Masumoto T. Effect of ball milling on hydrogenabsorption properties of FeTi, Mg2Ni and LaNi5. J Alloys Compds1995;231:804–9.

[68]Wagemans RWP, Lenth JHV, Jongh PE de, Dillen AJV, Jong KP de.Hydrogen storage in magnesium clusters: quantum chemical study.J Am Chem Soc 2005;127:16675–80.

[69]Hong T-W. Dehydrogenation properties of nano-amorphous Mg2NiHxby hydrogen induced mechanical alloying. J Alloys Compds2000;312:60–7.

[70]Tessier P, Enoki H, Bououdina M, Akiba E. Ball-milling of Mg2Niunder hydrogen. J Alloys Compds 1998;268:285–9.

[71]Huot J, Akiba E, Takada T. Mechanical alloying of Mg–Ni compoundsunder hydrogen and inert atmosphere. J Alloys Compds 1995;231:815–9.

[72]Chen Y, Williams JS. Formation of metal hydrides by mechanical alloying. J Alloys Compds 1995;217:181–4.

[73]Orimo S-I, Fujii H. Effects of nanometer-scale structure on hydriding properties of Mg–Ni alloys: a review. Intermetallics 1998;6:185–92.

[74]Abdellaoui M, Cracco D, Percheron-Guegan A. Structuralcharacterization and reversible hydrogen absorption properties of Mg2Ni rich nanocomposite materials synthesized by mechanicalalloying. J Alloys Compds 1998;268:233–40.

[75]Barkhordarian G, Klassen T, Bormann R. Kinetic investigation of the effect of milling time on the hydrogen sorption reaction of magnesium catalyzed with different Nb2O5contents. J Alloys Compds2006;407:249–55.

[76]Holtz RL, Imam MA. Hydrogen storage characteristics of ball-milled magnesium–nickel and magnesium–iron alloys. J Mater Sci1999;34:2655–63.

[77]Higuchi K, Kajioka H, Toiyama K, Fujii H, Orimo S, Kikuchic Y.In situ study of hydriding–dehydriding properties in some Pd/Mg thinfilms with different degree of Mg crystallization. J Alloys Compds1999;293–295:484–9.

[78]Akyildiz H, Özenba¸s M, Öztürk T. Hydrogen absorption in magnesiumbased crystalline thin films. Int J Hydrogen Energy 2006;31(10):1379–83.

[79]Higuchi K, Yamamoto K, Kajioka H, Toiyama K, Honda M, Orimo al. Remarkable hydrogen storage properties in three-layeredPd/Mg/Pd thin films. J Alloys Compds 2002;330–332:526–30.

[80]Imamura H, Sakasai N, Kajii Yi. Hydrogen absorption of Mg-based composites prepared by mechanical milling: factors affecting itscharacteristics. J Alloys Compds 1996;232:218–23.

[81]Shang CX, Guo ZX. Effect of carbon on hydrogen desorption andabsorption of mechanically milled MgH
2. J Power Sources 2004;129:73–80.

[82]Vija R, Sundaresan R, Maiya MP, Murthy SS. Comparative evaluation of Mg–Ni hydrogen absorbing materials prepared by mechanical alloying.Int J Hydrogen Energy 2005;30:501–8.[83]Han SS, Goo NH, Lee KS. Effects of sintering on composite metalhydride alloy of Mg 2Ni and TiNi synthesized by mechanical alloying.J Alloys Compds 2003;360(1–2):243–9.

[84]Orimo S, Fujii H. Materials science of Mg–Ni-based new hydrides.Appl Phys A 2001;72:167–86.

[85]Sato T, Blomqvist H, Noreus D. Attempts to improve Mg2 Ni hydrogenstorage by aluminium addition. J Alloys Compds 2003;356–357:494–6.[86]Zaluski L, Zaluska A, Ström-Olsen JO. Hydrogen absorption innanocrystalline Mg
2Ni formed by mechanical alloying. J AlloysCompds 1995;217:245–9.

[87]Singh AK, Singh AK, Srivastava ON. On the synthesis of the Mg2Nialloy by mechanical alloying. J Alloys Compds 1995;227:63–8.

[88]Abdellaoui M, Mokbli S, Cuevas F, Latroche M, Guegan A Percheron,Zarrouk H. Structural, solid–gas and electrochemical characterization of Mg 2Ni-rich and MgxNi100 amorphous-rich nanomaterials obtainedby mechanical alloying. Int J Hydrogen Energy 2006;31(2):247–50.

[89]Liang G, Boily S, Huot J, Neste AV, Schulz R. Mechanical alloyingand hydrogen absorption properties of the Mg–Ni system. J AlloysCompds 1998;267:302–6.

[90]Terzieva M, Khrussanova M, Peshev P, Radev D. Hydriding anddehydriding characteristics of mixtures with a high magnesium contentobtained by sintering and mechanical alloying. Int J Hydrogen Energy1995;20(1):53–8.

[91]Terzieva M, Khrussanova M, Peshev P. Hydriding and dehydridingcharacteristics of Mg–LaNi
5composite materials prepared bymechanical alloying.
J Alloys Compds 1998;267:235–9.

[92]Haussermann U, Blomqvist H, Noreus D. Bonding and stability of thehydrogen storage material Mg 2NiH
4. Inorg Chem 2002;41:3684–92.

[93]Zaluski L, Zaluska A, Tessier P, Ström-Olsen JO, Schulz R. Catalyticeffect of Pd on hydrogen absorption in mechanically alloyed Mg 2Ni,LaNi5and FeTi. J Alloys Compds 1995;217:295–300.

[94]Aymard L, Ichitsubo M, Uchida K, Sekreta E, Ikazaki F. Preparationof Mg 2 Ni base alloy by the combination of mechanical alloying andheat treatment at low temperature. J Alloys Compds 1997;259:L5–8. :D

[95]Tran NE, Imam MA, Feng CR. Evaluation of hydrogen storagecharacteristics of magnesium–misch metal alloys. J Alloys Compds2003;359:225–9.

[96]Friedlmeier G, Manthey A, Wanner M, Grollm M. Cyclic stabilityof various application-relevant metal hydrides. J Alloys Compds1995;231(1–2):880–7.

[97]Dehouche Z, Djaozandry R, Goyette J, Bose TK. Thermal cyclic chargeand discharge stability of nanocrystalline Mg
2Ni alloy. J Alloys Compds1999;288:312–8.

[98]Pedersen AS, Larsen B. The storage of industrially pure hydrogen inmagnesium. Int J Hydrogen Energy 1993;18:279–300.

[99]Bouaricha S, Huot J, Guay D, Schulz R. Reactivity during cycling of nanocrystalline Mg-based hydrogen storage compounds. Int J HydrogenEnergy 2002;27(9):909–13.

[100]Dehouche Z, Goyette J, Bose TK, Schulz R. Moisture effect onhydrogen storage properties of nanostructured MgH
2–V–Ti composite.Int J Hydrogen Energy 2003;28(9):983–8.

[101]Baer R, Zeiri Y, Kosloff R. Hydrogen transport in nickel (111). PhysRev B 1997;55(16):952–74.

[102]Bloch J, Mintz MH. Kinetics and mechanisms of metal hydrideformation—a review. J Alloys Compds 1997;253–254:529–41.

[103]Iwakura C, Nohara S, Zhang SG, Inoue H. Hydriding and dehydridingcharacteristics of an amorphous Mg
2Ni–Ni composite. J Alloys Compds1999;285:246–9.

[104]Liang G, Huot J, Boily S, Neste AV, Schulz R. Hydrogen storageproperties of nanocrystalline Mg1.9Ti0.1 Ni made by mechanicalalloying. J Alloys Compds 1999;282:286–90.

[105]Zaluska A, Zaluski L. New catalytic complexes for metal hydridesystems. J Alloys Compds 2005;404–406:706–11.

[106]Huot J, Swainson IP, Shulz R. Neutron diffraction study of lixiviatednanocrystalline Mg–Li compound. J Alloys Compds 1999;292:292–5.

[107]Liang G. Synthesis and hydrogen storage properties of Mg-based alloys.J Alloys Compds 2004;370:123–8.[108]Züttel A, Wenger P, Rentsch S, Sudan P, Mauron Ph, Emmenegger Ch.LiBH4
a new hydrogen storage material. J Power Sources 2003;118:1–7.

[109]Kyoi D, Sato T, Rönnebro E, Kitamura N, Ueda A, Ito M. et al.A new ternary magnesium–titanium hydride Mg
7TiHxwith hydrogendesorption properties better than both binary magnesium and titaniumhydrides. J Alloys Compds 2004;372:213–7.

[110]Bogdanovic B, Schwickardi M. Ti-doped NaAlH4
as a hydrogen-storage material—preparation by Ti-catalyzed hydrogenation of aluminum powder in conjunction with sodium hydride. Appl Phys A2001;72:221–3.

[111]Bogdanovic B, Scwickardi M. Ti-doped alkali metal aluminiumhydrides as potential novel reversible hydrogen storage materials.J Alloys Compds 1997;253–254:1–9.

[112]Bogdanovic B, Brand RA, Marjanovic A, Schwickardi M, Tölle J.Metal-doped sodium aluminium hydrides as potential new hydrogenstorage materials. J Alloys Compds 2000;302:36–58.

[113]Jensen CM, Gross KJ. Development of catalytically enhanced sodiumaluminum hydride as a hydrogen-storage material. Appl Phys A2001;72:213–9.

[114]Zaluski L, Zaluska A, Ström-Olsen JO. Hydrogenation propertiesof complex alkali metal hydrides fabricated by mechano-chemicalsynthesis. J Alloys Compds 1999;290:71–8.

[115]Genma R, Okada N, Sobue T, Uchida H-H. Mechanically milledalanates as hydrogen storage materials. Int J Hydrogen Energy2006;31(2):309–11.

[116]Sandrock G, Gross KJ, Thomas G, Jensen C, Meeker D, Takara S.Engineering considerations in the use of catalyzed sodium alanates forhydrogen storage. J Alloys Compds 2002;330–332:696–701.

[117]Wang P, Jensen CM. Method for preparing Ti-doped NaAlH
4using Tipowder: observation of an unusual reversible dehydrogenation behavior.J Alloys Compds 2004;379:99–102.

[118]Sun D, Srinivasan SS, Kiyobayashi T, Kuriyama N, Jensen CM.Rehydrogenation of dehydrogenated NaAlH
4at low temperature andpressure. J Phys Chem B 2003;107:10176–9.

[119]Zidan RA, Takara S, Hee AG, Jensen CM. Hydrogen cycling behaviorof zirconium and titanium–zirconium-doped sodium aluminum hydride.J Alloys Compds 1999;285:119–22.

[120]Zaluska A, Zaluski L, Ström-Olsen JO. Sodium alanates for reversiblehydrogen storage. J Alloys Compds 2000;298:125–34.

[121]Jensen CM, Zidan R, Mariels N, Hee A, Hagena C. Advanced titaniumdoping of sodium aluminum hydride segue to a practical hydrogenstorage material. Int J Hydrogen Energy 1999;24:461–5.

[122]Bogdanovic B, Felderhoff M, Kaskel S, Pommerin A, Sclichte K,Schüth F. Improved hydrogen storage properties of Ti-doped sodiumalanate using titanium nanoparticles as doping agents. Adv Mater2003;15(12):1012–5.

[123]Sandrock G, Gross KJ, Thomas G. Effect of Ti-catalyst content on thereversible hydrogen storage properties of the sodium alanates. J AlloysCompd: s 2002;339:299–308.

[124]Sun D, Kiyobayashi T, TakePooa HT, Kuriyama N, Jensen CM. X-raydiffraction studies of titanium and zirconium doped NaAlH
4 elucidationof doping induced structural changes and their relationship to enhancedhydrogen storage properties.
J Alloys Compds 2002;337:L8–L11.B. Sakintuna et al./International Journal of Hydrogen Energy 32 (2007) 1121
–1140 1139

[125]Gross KJ, Guthrie S, Takara S, Thomas G. In situ X-ray diffractionstudy of the decomposition of NaAlH
4. J Alloys Compds 2000;297:270–81.

[126]Chaudhuri S, Muckerman JT. First principles study of Ti-catalyzedhydrogen chemisorption on an Al surface: a critical first stepfor reversible hydrogen storage in NaAlH 4. J Phys Chem B2005;109(15):6952–7.

[127]Fichtner M, Fuhr O, Kircher O, Rothe J. Small Ti clusters for catalysisof hydrogen exchange in NaAlH 4. Nanotechnology 2003;14:778–85.

[128]Thomas GJ, Gross KJ, Yang NYC, Jensen C. Microstructural character-ization of catalyzed NaAlH
4. J Alloys Compds 2002;330–332:702–7.

[129]Huot J, Boily S, Güther V, Schulz R. Synthesis of Na
3AlH 6 andNa2 LiAlH6 by mechanical alloying. J Alloys Compds 1999;383:304–6.

[130]Kircher O, Fichtner M. Kinetic studies of the decomposition of NaAlH
4doped with a Ti-based catalyst. J Alloys Compds 2005;404–406:339–42.

[131]Filinchuk YE, Yvon K. Boron-induced hydrogen localization in thenovel metal hydride LaNi3 BHx(x=2.5. 3.0). Inorg Chem 2005;44:4398–406.

[132]Hu YH, Ruckenstein E. Hydrogen storage of Li
2NH prepared byreacting Li with NH3. Ind Eng Chem Res 2006;45(1):182–6.

[133]Ichikawa T, Isobe S, Hanada N, Fujii H. Lithium nitride for reversible hydrogen storage. J Alloys Compds 2004;365:271–6.

[134]Hu HH, Ruckenstein E. Highly effective Li2O/Li3N with ultrafastkinetics for H2storage. Ind Eng Chem Res 2004;43:2464–7.

[135]Hu YH, Ruckenstein E. H2storage in Li3N. Temperature programmedhydrogenation and dehydrogenation. Ind Eng Chem Res 2003;42:5135–9.

[136]Pinkerton FE, Meisner GP, Meyer MS, Balogh MP, Kundrat MD.Hydrogen desorption exceeding ten weight percent from the newquaternary hydride LiBN
2H8. J Phys Chem B 2005;109:6–8.

[137]Vajo JJ, Skeith SL, Mertens F. Reversible storage of hydrogen indestabilized LiBH
4. J Phys Chem B 2005;109(9):3719–22.

[138]Morioka H, Kakizaki K, Chung S-C, Yamada A. Reversible hydrogendecomposition of KAlH4. J Alloys Compds 2003;353:310–4.

[139]Dafert FW, Miklauz R. Uber einige neue Verbindungen von Stick-stoff and Wasserstoff mit Lithium. Diese Sitzungsberichte Bd. CXVIII, July1910. p. 981–96.

[140]Ruff O, Georges H. Uber das Lithium-imid und einige Bemerkungenzu der Arbeit von Dafert und Miklauz: Über einige neue Verbindungenvon Stickstoff und Wasserstoff mit Lithium. Anorganischen undelektrochemischen Laboratorium der Kgt. Techn. Hochschule Danzig,February 13, 1911. p. 502–6.

[141]Hu YH, Ruckenstein E. Ultrafast reaction between LiH and NH 3duringH2storage in Li3N. J Phys Chem A 2003;107(46):9737–9.

[142]Orimo S, Nakamori Y, Kitahara G, Miwa K, Ohba N, Noritake al. Destabilization and enhanced dehydriding reaction of LiNH 2: anelectronic structure viewpoint. Appl Phys A 2004;79:1765–7.

[143]Nakamori Y, Orimo S-I. Destabilization of Li-based complex hydrides.J Alloys Compds 2004;370:271–5.

[144]Nakamori Y, Orimo S. Li–N based hydrogen storage materials. MaterSci Eng B 2004;108:48–50.

[145]Fakioglu E, Yürüm Y, Veziroglu TN. A review of hydrogen storagesystems based on boron and its compounds. Int J Hydrogen Energy2004;29:1371–6. :)

[146]Schlesinger HI, Brown HC. J Am Chem Soc 1940;62:3429.

[147]Stasinevich DS, Egorenko GA. J Russ Inorg Chem 1968;13(3):341–3.

[148]Züttel A, Rentsch S, Fischer P, Wenger P, Sudan P, Mauron al. Hydrogen storage properties of LiBH 4. J Alloys Compds2003;356–357:515–20.

[149]Zaluska A, Zaluski L, Ström-Olsen JO. Lithium–beryllium hydrides:the lightest reversible metal hydrides. J Alloys Compds 2000;307:157–66.

[150]Vucht JV, Kuijpers FA, Bruning H. Philips Res Rep 1970;25:133.

[151]Reilly JJ, Wiswall RH. Formation and properties of iron titaniumhydride. Inorg Chem 1974;13(1):218–22.

[152]Reilly JJ, Sandrock GD. Hydrogen storage in metal hydrides. Sci Am1980;242(2):118–9. :cool:

[153]Goo NH, Hirscher M. Synthesis of the nanocrystalline MgS itsinteraction with hydrogen. J Alloys Compds 2005;404–406:503–6.

[154]Iosub V, Latroche M, Joubert J-M, Percheron-Guégan A. Optimisationof MmNi 5−xSnx(Mm=La, Ce, Nd and Pr, 0.27<x <0.5)compositions as hydrogen storage materials. Int J Hydrogen Energy2006;31:101–8.

[155]Bououdina M, Soubeyroux JL, Rango P de, Fruchart D. Phasestability and neutron diffraction studies of the Laves phase compoundsZr( Cr 1 − x Mo x) 2 with 0.0<x <0.5 and their hydrides. Int J HydrogenEnergy 2000;25:1059–68.

[156]Chen Y, Sequeira CAC, Chen C, Wang X, Wang Q. Metal hydride bedsand hydrogen supply tanks as minitype PEMFC hydrogen sources. IntJ Hydrogen Energy 2003;28:329–33.

[157]Dehouche Z, Grimard N, Laurencelle F, Goyette J, Bose TK. Hydridealloys properties investigations for hydrogen sorption compressor.J Alloys Compds 2005;399:224–36.

[158]Challet S, Latroche M, Percheron-Guegan A, Heurtaux F.Crystallographic and thermodynamic study of La
0.55Y0.45Ni5. H2,a candidate system for hydrogen buffer tanks. J Alloys Compds2005;404–406:85–8. :cool:

[159]Muthukumar P, Maiya MP, Murthy SS. Experiments on a metalhydride-based hydrogen storage device. Int J Hydrogen Energy 2005;30:1569–81. :cool:

[160]Wang X, Chen R, Zhang Y, Chen C, Wang Q. Hydrogen storage alloysfor high-pressure suprapure hydrogen compressor. J Alloys Compds2006;420(1–2):322–5.

[161]Santos DS dos, Bououdina M, Fruchart D. Structural and hydrogenationproperties of an 80wt% TiCr
1.1 V 0.9 –20wt% LaNi 5composite material.Int J Hydrogen Energy 2003;28:1237–41.

[162]Liu Y, Pan H, Gao M, Li G, Sun X, Lei Y. Investigation on thecharacteristics of La 0.7Mg0.3Ni2.65Mn0.1Co0.75+x(x= hydride electrode alloys for Ni/MH batteries. Part I: phasestructures and hydrogen storage. J Alloys Compds 2005;387:147–53.

[163]Bououdina M, Enoki H, Akiba E. The investigation of theZr 1−yTiy(Cr1−xNix)2–H2system phase composition analysis andthermodynamic properties. J Alloys Compds 1998;281:290–300.

[164]Kojima Y, Kawai Y, Towata S-I, Matsunaga T, Shinozawa T, KimbaraM. Development of metal hydride with high dissociation pressure.J Alloys Compds 2005, in press.

[165]Zaluski L, Zaluska A, Tessier P, Strörn-Olsen JO, Schulz R. Effects of relaxation on hydrogen absorption in Fe–Ti produced by ball-milling.J Alloys Compds 1995;227:53–7.[166]Kuriiwa T, Tamura T, Amemiya T, Fuda T, Kamegawa A, Takamura al. New V-based alloys with high protium absorption and desorptioncapacity. J Alloys Compds 1999;293–295:433–6.

[167]Seo C-Y, Kim J-H, Lee PS, Lee J-Y. Hydrogen storage properties of vanadium-based B.C.C. solid solution metal hydrides. J Alloys Compds2003;348:252–7.

[168]Takasaki A, Kelton KF. Hydrogen storage in Ti-based quasicrystalpowders produced by mechanical alloying. Int J Hydrogen Energy2006;31(2):183–90.

[169]Okada M, Kuriiwa T, Tamura T, Takamura H, Kamegawa A.Ti–V–Cr B.C.C. alloys with high protium content. J Alloys Compds2002;330–332:511–6.

[170]Yu XB, Yang ZX, Feng SL, Wu Z, Xu NX. Influence of Fe addition onhydrogen storage characteristics of Ti–V-based alloy. Int J HydrogenEnergy 2006;31(9):1176–81.

[171]Nomura K, Akiba E. H2 Absorbing–desorbing characterization of theTi–V–Fe alloy system. J Alloys Compds 1995;231:513–7.

[172]Yu XB, Wu Z, Xia BJ, Xu NX. Enhancement of hydrogen storagecapacity of Ti–V–Cr–Mn BCC phase alloys. J Alloys Compds2004;372:272–7.

[173]Gao L, Chen C, Chen L, Wang X, Zhang J. et al. Hydriding/dehydridingbehaviors of La 1.8Ca02Mg14Ni3alloy modified by mechanical ball-milling under argon. J Alloys Compds 2005;399:178–82.

[174]Lu D, Li W, Hu S, Xiao F, Tang R. Uniform nanocrystalline AB 5-typehydrogen storage alloy: preparation and properties as negative materialsof Ni/MH battery. Int J Hydrogen Energy 2006;31(6):678–82. 1140 B. Sakintuna et al./International Journal of Hydrogen Energy 32 (2007) 1121–1140

[175]Corre S, Bououdina M, Fruchart D, Adachi G-Y. Stabilisation of highdissociation pressure hydrides of formula La
1−xCexNi5 with carbonmonoxide. J Alloys Compds 1998;275(277):99–104.

[176]Broom DP, Kemali M, Ross DK. Magnetic properties of commercialmetal hydride battery materials. J Alloys Compds 1999;293–295:255–9.[177]Joubert J-M, Cerny R, Latroche M, Percheron-Guegan A, SchmittB. Hydrogenation of LaNi 5studied by in situ synchrotron powderdiffraction. Acta Mater 2006;54:713–9.

[178]Joubert J-M, Latroche M, Cerny R, Percheron-Guegan A, Yvon K.Hydrogen cycling induced degradation in LaNi 5-type materials. J AlloysCompds 2002;330–332:208–14.

[179]Joubert J-M, Cerny R, Latroche M, Leroy M, Guenee L, Percheron-Guegan A. et al. A structural study of the homogeneity domain of LaNi5. J Solid State Chem 2002;166:1–6.

[180]Joubert J-M, Latroche M, Cerny R, Bowman RC, Percheron-GueganA, Yvon K. Crystallographic study of LaNi5−xSn2−x(0.2<x <0.5)compounds and their hydrides. J Alloys Compds 1999;293–295:124–9.

[181]Demircan A, Demiralp M, Kaplan Y, Mat MD, Veziroglu TN.Experimental and theoretical analysis of hydrogen absorption inLaNi
5 –H2 reactors. Int J Hydrogen Energy 2005;30:1437–46.

[182]Chen Y, Sequeira CAC, Chen C, Wang X, Wang Q. Metal hydride bedsand hydrogen supply tanks as minitype PEMFC hydrogen sources. IntJ Hydrogen Energy 2003;28:329–33.

[183]Liu FJ, Suda S. Properties and characteristics of fluorinated hydridingalloys. J Alloys Compds 1995;231:742–50.

[184]Wang XL, Suda S. Surface characteristics of fluorinated hydridingalloys. J Alloys Compds 1995;231:380–6.

[185]Suda S, Sun Y-M, Liu B-H, Zhou Y, Morimitsu S, Arai K. et al.Catalytic generation of hydrogen by applying fluorinated-metal hydridesas catalysts. Appl Phys A 2001;72:209–12.

[186]Kikkinides ES, Georgiadis MC, Stubos AK. On the optimizationof hydrogen storage in metal hydride beds. Int J Hydrogen Energy2006; 31(6):737–51

[187 ]Bououdina M, Grant D, Walker G. Review on hydrogen absorbing materials—structure, microstructure and thermodynamic properties. IntJ Hydrogen Energy 2006;31(2):177–82.

[188]Dantzer P. Properties of intermetallic compounds suitable for hydrogenstorage applications. Mater Sci Eng A 2002;

[189]Bavykin DV, Lapkin AA, Plucinski PK, Friedrich JM, Walsh FC.Reversible storage of molecular hydrogen by sorption into multilayeredTiO 2  nanotubes. J Phys Chem B 2005;109:19422–7

Low operation pressure:
Fraunhofer IFAM‘s hydride
materials store hydrogen at moderate and relatively easy to
handle pressures between 8 and 30 bar, which is typically the
outlet pressure of electrolyzers. Therefore, a costly and diffcult
to operate hydrogen compressor can be avoided

Matt Watts

Re: Metal Hydride Tanks DIY
« Reply #2, on August 4th, 2014, 11:07 PM »

Can I get 3 #98's, a #173 and two #187s please.

We can square up as soon as you explain what on gods green earth these lists you keep posting are.

I'm a moderator and I don't get it, how is anyone else supposed to understand what these things are?  Can you at least embed some URLs for people to look at?  These entries have a ways to go to be anything DIY helpful.

"Please consider the environment before printing this thread."


Re: Metal Hydride Tanks DIY
« Reply #3, on August 4th, 2014, 11:12 PM »Last edited on August 4th, 2014, 11:52 PM
Give me time it is alot to adjust as i post it and configure it
I will link every doc I can find, your welcome to help? on this thread.

Matt Watts

Re: Metal Hydride Tanks DIY
« Reply #4, on August 4th, 2014, 11:16 PM »
Quote from securesupplies on August 4th, 2014, 11:12 PM
give me time it is alot to adjust as i post it and configure it
Very well.

Please don't let it hang out there in its current state for very long.  It would sure be better if you did your compilation offline and only post nice concise and to the point threads that people can immediately take and run with.  A top ten list would be plenty sufficient for most people to get their feet wet and still have enough variation to match their resources.
Re: Metal Hydride Tanks DIY
« Reply #5, on August 4th, 2014, 11:18 PM »
Quote from securesupplies on August 4th, 2014, 11:12 PM
your welcome to help? on this thread.
Thanks for the offer, but I do have my hands full with two projects and a ton of research.


Re: Metal Hydride Tanks DIY
« Reply #6, on August 4th, 2014, 11:31 PM »Last edited on August 4th, 2014, 11:36 PM
Ideal kit with MEtal hydride tank

 in replace of compressed tank shown here is a 33 A tank a similar sized metal hydride tank can be 300-500 litre of hydrogen
Re: Metal Hydride Tanks DIY
« Reply #7, on August 5th, 2014, 03:24 AM »Last edited on August 5th, 2014, 03:28 AM
I have written to several  leade rin this to asked the solutions  , if you have  more info on it post
lets nail this baby . and start installing

recycled either by electrolytic methods or by a carbo-thermal process

docs here are for lithium hydride thay hve good methods and terminology to learn the steps of recycle
and how to separate the metals

What are the best mixes for performance and easy recycle?

Re: Metal Hydride Tanks DIY
« Reply #8, on August 5th, 2014, 07:50 AM »Last edited on August 5th, 2014, 07:58 AM
How to make

Best Reference to start with is Mr Roger Billings work

Each of the cylinders 214 and 224 include two filters 282 and 284 which are used to substantially prevent the introduction of particles or other impurities into the sorbent material 280, as well as to insure that the sorbent material 280 is retained within the cylinders 214 and 224. In the actually constructed embodiment of FIG. 1, the filter 282 is a gas permeable, fiberous polyester disc, and the filter 284 is a stainless steel mesh strainer element obtained from a Nupro TF series filter. Each of these mesh strainer elements were secured to a steel cap 282 of the cylinders via a press fit relationship. Additionally, it should be noted that each of the cylinders 214 and 224 is also provided with a valve 288 for selectively permitting flow of the gaseous hydrocarbon fuel to and from each of these cylinders and to maintain a vacuum while activating the sorbent material.

pdf and basic tank build pic attached

make you blend dry it and make it fine power and the pak with press and fill tank.
put filter and , remember a pressure relief on the pipe circuit us dual guage regulator one side tank one side line pressure

Re: Metal Hydride Tanks DIY
« Reply #9, on August 5th, 2014, 08:12 AM »
Food for thought

Re: Metal Hydride Tanks DIY
« Reply #10, on August 5th, 2014, 08:30 AM »
Re: Metal Hydride Tanks DIY
« Reply #11, on August 5th, 2014, 08:45 AM »

Fantastic project

Re: Metal Hydride Tanks DIY
« Reply #12, on August 5th, 2014, 09:39 AM »

what working Temp vs pressure?> 

Maybe that will change???
Re: Metal Hydride Tanks DIY
« Reply #13, on August 5th, 2014, 10:28 AM »
more on the solid heat hydride compressor
Re: Metal Hydride Tanks DIY
« Reply #14, on August 5th, 2014, 10:59 AM »
Alex Bevan  & Lydia Anne Pickering solid state compressor

Nice work a good read.
Re: Metal Hydride Tanks DIY
« Reply #15, on August 18th, 2014, 11:09 AM »
    Low Pressure Tanks and Filling just a interesting study we have many option to fill and compress manual, 2 stage split stages and industrial

   low pressure high pressure
   compressed tank high pressure fill  and metal hydride low pressure fill