Recent Posts
41
Stan Meyer WFC / Re: The AM signal and how it works. Carrier and modulation
« on September 29th, 05:05 AM by nav »
R1 is voltage rated according to the voltage that the secondary coil is passing of perhaps 400v. The amount of current that the resister uses is related to the Q factor of the chokes and the frequency they allow to pass unhindered plus the current value of the resister in accordance to ohms law at carrier frequency. However, all AC current series circuits try to resist the change of the direction of current (inductance). This means that the wires in the chokes are subject to inductance like any other AC circuit. The amount of inductance is related to current draw at R1 and the Q factor of the choke at the carrier frequency. When the Q factor is low enough, the inductance of the choke itself is low but the inductance of the wire is still subject to the value of R1 at carrier frequency. At modulation frequency the Q factor of the choke changes while there is still inductance in the choke winding's caused by R1 at the carrier frequency but R1 becomes redundant and high resistance to the flow of current at modulation frequency (high impedance) takes over. The choke can no longer pass current either through the resister or the cell. But the phase of the choke spikes the cell and tries to form a tank circuit and keeps spiking it while ever the modulation frequency is causing the choke to be self resonant. When a choke becomes self resonant, they act differently, they try and form tank circuits with everything they touch.
42
Stan Meyer WFC / Re: The AM signal and how it works. Carrier and modulation
« on September 29th, 04:15 AM by nav »
You must also understand the workings of the carrier frequency and the chokes. The secondary coil works like any other transformer coil and it steps up the voltage via normal coil operation while under load. The high voltage passes through the chokes and the current passes through the chokes at low impedance which means there is only a small magnetic field present in the chokes. However, because the current at R1 at carrier frequency is high then the inductance in the choke winding's is also high even though the magnetic field is low. When the modulator frequency is passed through the choke, there is enough inductance and voltage present because R1 dictates this. R1 can only use current and voltage in accordance to ohms law, inductance fields are also in accordance with ohms law but the inductance field will only expel energy in accordance with the amount of energy that can possibly be consumed. If you have a system that is capable of 500 amps current and you place a light bulb that is 50 amp, the system will only draw 50 amp not push 500 amps through the bulb. In the same way the chokes have low magnetic field at low impedance but inductance is equal to current draw at R1, then if you switch to high impedance where the magnetic field build up is equal to the higher inductance because R1 is redundant.
43
Stan Meyer WFC / Re: The AM signal and how it works. Carrier and modulation
« on September 29th, 03:35 AM by nav »
If your chokes self resonant frequency is in the harmonic range of the carrier frequency they will merge into low impedance and current will pass across the resister and fuel cell.
44
Stan Meyer WFC / Re: The AM signal and how it works. Carrier and modulation
« on September 29th, 03:30 AM by nav »
Quote from Gunther Rattay on September 28th, 10:36 AM
Where do chokes get their energy for high impedance state from when they resonate at secondary frequency (mark and space) and carrier is higher frequency but dc due to the diode?
Mark is always dc pulses instead of continuous current flow. Can magnetic field increase under these conditions?

Despite the diode there is ac voltage over the cell. How comes?
The Resister at R1 (lower picture) presents high impedance to the flow of current at the modulation frequency because like any choke on any series system it will not allow current to pass at it's resonant frequency, The capacitor in the water because the gap between the tubes is so large it also presents a high impedance figure and current will not pass through the water. Ask yourself how a tank circuit works or LC circuit? It works because there is no dissipation of energy due to resistance (high impedance). To start the push pull effect of an LC circuit we must always start with a loaded coil and a high resistance to the flow of current which means the frequency of the coil must be met with an equal resistance to the flow of current. The water fuel cell presents itself as an equal resistance to the flow of current (an high impedance) to the coil and therefore an initial ping of energy (voltage potential) takes place. In a normal LC circuit the capacitor responds by a reverse ping so that the push pull tank circuit will continue but the diode won't allow it. You are left with a situation where the choke is continually trying to create a tank circuit with the fuel cell but the diode won't allow it. This creates a dc bias on the fuel cell because the negative choke isn't allowed to ping the water fuel cell at all because the diode only allows the positive choke to ping the fuel cell.
The reason the chokes are in an high energy state is because they dissipate energy into the resister R1 at the carrier frequency which is low impedance, this energy field is quite substantial which is driving a 220 ohm resistor. When the modulations begin and the chokes begin to resonate at their self resonant frequency the Q factor of the coil changes and the resister R1 becomes high impedance to the flow of current.
The only reason AC is entering the fuel cell on some systems is because there is current flowing through the fuel cell and the diodes ability to stop current in either direction has be compromised. This can only happen if the resister at R1 across the chokes terminals does not present an high enough impedance and the water fuel cell does not present an high enough impedance, Basically your chokes are not self resonant where they need to be where no current can pass through R1 or you have the timing of your modulations so that they become an harmonic of the carrier frequency. They CAN NOT be an harmonic of the carrier frequency!
45
Stan Meyer WFC / Re: The AM signal and how it works. Carrier and modulation
« on September 29th, 03:04 AM by Gunther Rattay »
Maybe it helps to describe the process as a state machine
46
Stan Meyer WFC / Re: The AM signal and how it works. Carrier and modulation
« on September 28th, 10:36 AM by Gunther Rattay »
Where do chokes get their energy for high impedance state from when they resonate at secondary frequency (mark and space) and carrier is higher frequency but dc due to the diode?
Mark is always dc pulses instead of continuous current flow. Can magnetic field increase under these conditions?

Despite the diode there is ac voltage over the cell. How comes?
47
Stan Meyer WFC / Re: The AM signal and how it works. Carrier and modulation
« on September 28th, 06:05 AM by nav »
The Resistor at R1 presents a very high impedance to the chokes at resonance (modulated frequency) and current cannot pass just like any choke system, the capacitor however is not a dead short like the resistor and cannot complete a circuit and it must rely on a reverse ping to register. The diode stops reverse pings.
48
Stan Meyer WFC / Re: The AM signal and how it works. Carrier and modulation
« on September 28th, 05:48 AM by nav »
The impedance that the chokes ping into can only be regarded as infinite because there is no response via the diode therefore cell size is totally irrelevant.
49
Stan Meyer WFC / The AM signal and how it works. Carrier and modulation
« on September 28th, 05:28 AM by nav »
Had a few private messages asking about this and I apologize for my long absence but I've been busy. I have discovered how it works and for the benefit of everyone here and mainly Matt who helped me quite a lot here are some unanswered questions, Matt you were right you do have to prime the system to get the magnetic field.
Any choke whether it be common mode or differential mode choke works on a basic principle. You have two frequencies, a primary frequency you wish to pass through the choke and a secondary frequency you wish to block and that principle is based on Q factors of the coils.

Stan's system is very simple, you prime the two chokes with a low impedance load like any other common mode or differential mode choke system. That load has to be high enough to prime the chokes with thousands of volts trapped in the windings so how does it work? The fuel cell circuit actually passes current (not the tubes themselves) that has a significantly low impedance to create current flow. No choke can EVER work without a primary current flow and that's a fact. Stan Meyer used a resistor in parallel with the cell and it's visible in the pictures, it's about 200 Ohms which is a match of his chokes electrical resistance not their impedance at the carrier frequency. He primes the chokes by running them at a carrier wave frequency and current flows through the resistor like any normal circuit. The chokes are NOT resonant as the carrier frequency, they are resonant at another frequency - the secondary frequency. Any choke system that purges unwanted signals out of a system has to dump those signals to ground through L/C or it burns then up via L/R, in fact some systems use L/C/R together in various ways.

Stan set his mind on L/C but the C wasn't dumped to ground like in normal systems, it was allowed to build on massive caps. The carrier wave primes the chokes into the resistor then Stan introduces a modulation into the fray. The Q factor of the chokes is such that the modulation frequency is at the self resonant frequency of the chokes and those chokes are ringing. If you tune any system based on the Q factor of the chokes then your options are really wide open at that point and you have choices.

But here lies the beauty of this system: During the normal operation of the carrier wave into the resistor, the resistor doesn't actually use high voltage, it uses current and is only voltage rated at it's given ohmic value. The voltage potential in the chokes is 20kv + but the resistor will not in any way recognize that fact, it can only draw voltage based on the Q factor at low impedance and Ohms law. The high voltage potential is actually invisible to the resistor because the high voltage potential is only visible at high impedance!

Stan simply connected his cell to the self resonant frequency of the coils and his positive potential built up on the positive cell because of the diode not allowing a tank circuit to form. Understanding what happens here is not easy by any stretch of the imagination but I'll try to explain it. When the chokes are modulated at their self resonant frequency they will by nature try to form a relationship with ANYTHING connected to them. If it finds that the relationship of a capacitor to be equal in impedance and correct phase it will form a LC or tank circuit with it, if it finds a lower impedance then it will come out of resonance and act just like the carrier wave and induce current. It is all based on WHAT THE CHOKE SEE'S. If there is a diode in the potential tank circuit it cannot take a look in one particular direction only the other but it will take a peek in the direction it can look. In other words it 'pings' it. After it pings it, the normal response is to receive a 'ping' back from another coil or cap and the push pull starts if correct phase and impedance is there. BUT the diode stops the reverse ping and no relationship can be formed at all. Chokes however don't just send one ping, they'll continue to take a peek indefinitely because they have a habit of trying to dump their contents on something else. Stan's system doesn't allow the chokes to understand what they are pinging into, they haven't got a clue because the diode stops reverse pings and the chokes will continue pinging at a very fast rate of knots into a UNKNOWN impedance and phase. It becomes a biased push system and your cell can be any size you like because the chokes can't see them.

So where is everyone going wrong? Basically they are trying to send the modulated frequency into the chokes without the carrier wave and you can't do that. You have to send a carrier wave into a resistive load first then modulate at the resonant frequency of the chokes but timing or phase is also important, the right frequency carrier, it's phase relationship to the parasitic modulations are important so that when you are at resonance the carrier wave cannot interfere with modulations when they ping the cell. This is how it all works my friends and if you don't believe it then build a tiny version of what I've described and you'll see.

Now, the schematic below has another circuit that is totally unnecessary but it is there to explain what the diode does. Q2 driven by the second PWM is totally unnecessary and I've surrounded it in blue. Instead of chopping off the high impedance modulations and stop them entering the 220ohm resister via a diode I've chopped them off with a PWM and Q2, you can see the phase relationship which I've marked. The 220ohm resistor goes exactly where I've placed it on the schematic and the diode does two things, a: it switches between low and high impedance and b: it doesn't allow the cell to ping the chokes and form a tank circuit, instead you end up with the chokes pinging an UNKNOWN impedance indefinitely. The modulation frequencies involved are what ever your chokes are self resonant at and your carrier wave frequency is where the 220ohm resister is happy and enough magnetic field is present in the chokes to provide an high voltage field in them. The beauty of it is that if phased correctly the diode will switch between high and low impedance. The true schematic is also below.