Recent Posts
21
Per se

22
HHO / Browns Gas / Hydroxy / Stan Meyer / Re: 8XA Circuit
« on October 3rd, 08:10 PM by securesupplies »
Just Some little updates on this we  have a little control and new faster switch  now
23
Stan Meyer WFC / Re: The AM signal and how it works. Carrier and modulation
« on October 3rd, 09:47 AM by warj1990 »
The only variable inductor I have ever seen with Stanley Meyers products.

Not saying it is right, or the only way,  just pointing out what a Variac really is.

W.
25
Stan Meyer WFC / Re: The AM signal and how it works. Carrier and modulation
« on October 2nd, 12:09 AM by Gunther Rattay »
so true!

... thinking about practicability of LTSpice simulation of your circuits above first ...
26
Also important. If you move to the nine tube set then the impedance of the system will change. The impedance of the tubes will change as you move up in size and the series impedance of tubes and L2 will change. Therefore, when calculating the size of L2 it is important that you do not go outside the range of the variable capacity when in series with the tubes. On 4 inch plates you can get away with it, on tubes that present a parallel equation connected to a series equation the math becomes extremely complicated especially in the light their total length may be 250 inches long in parallel sets connected to a series tuning coil. If you go bifilar it gets even worse because L2 cannot be variable so stay away from those till you understand it more. Once you establish some figures you can eventually do away with variable L2 but if you are down sizing to an injector size fuel cell, variable L2 will need to be reconnected until you find the resonant/none resonant inductance and capacitance of the system at both carrier and modulated frequencies.
27
Resister is 220 to 250 ohms by the way, at 50hz presents low impedance, at 5khz it presents impedance in mega ohms. Fuel cell presents impedance at 5khz in mega ohms, in series with L2 the fuel cell presents an impedance match. When impedance match occurs, L2 is happy to communicate with the fuel cell. No impedance match - no communication. Dc bias builds up on cell because of diode won't allow the pendulum to swing in tank circuit. Hope everyone is beginning to understand.
28
Missed the ground from the primary in picture A, sorry
29
Quote from Gunther Rattay on September 30th, 12:35 PM
Interesting information, thx Nav!

What difference does it make whether L1-4 are on common core or separate cores?
How about gap or no gap according to tuning/adjustment?
I tried both with air gaps and without air gaps but my air gap principle was wrong, we all make mistakes along the way. You can use chokes on the same transformer or you can use chokes on there own transformer BUT take note of this:- The phase of a choke that is on a separate transformer is different to the phase of a choke that sits on a core with the secondary. Study mutual inductance of multi core transformers to understand this then study the phase of stand alone bifilar chokes and differential mode chokes.
Stan uses bifilar chokes on several of his designs. The bifilar choke will only choke current at its resonant frequency where the Q factor is at it's highest and it will only choke parasitic frequencies that sit on carrier frequencies where the load (resistance) presents an high impedance at the parasitic frequency.
Consider the below low pass filter (picture). Consider what takes place on this circuit. The resistance is at low frequency which is the standard operating frequency (our carrier) and the filter will remove higher frequencies which are unwanted frequencies (our modulation). How does the circuit work and stop the unwanted signal entering the resister? When the choke L1 is resonant at the unwanted frequency it forms a tank circuit with the capacitor and the swing of the tank circuit uses up the unwanted signal via resistive losses between the two components. Sometimes, if the unwanted signal is too powerful for the capacitor there is a shunt to ground from one side of the capacitor.
Build a straight forward circuit consisting of a step up transformer rated at 50/60hz, any normal transformer of 1:20. Connect it to any resister that has a pretty high wattage or light bulb that is rated at 500v and 20 watt. Picture A describes this. Use a variac and transistor rated at 50w and drive the transistor at 50 or 60hz but any type of pulse provider. That is all you need to do in the first part. Get the light bulb shining as bright as it should be or measure the current across the resister. Then introduce a parasite into the AC sign wave, a modulation of 5hz will do but keep the modulation amplitude low at first, watch the amp meter on your resister and increase the modulation amplitude, the light bulb will become dimmer and dimmer as the amplitude of the modulation increases. This is because your 50/60hz transformer cannot work properly at 5khz, it's becomes inefficient at what its supposed to do, the flux in the core becomes too saturated and the bulb dims then the transformer will become hot. don't do this for too long because you'll burn it out. Increase the modulations so that the light bulb is bright or scope the resister so you can see those modulations across it while maintaining current flow. Now we have a system working with a paracitic signal which we are going to capture elsewhere.
Next step, get used to filtering before you take too big a plunge. Build circuit B. Make L1 resonant at 5Khz exactly and you all know how to do that. C1 is a 5kz crossover cap from any crossover circuit rated for 5khz. D1 is rated higher than current at R1 and L1 is 29 gauge on ferrite core. Before you can run you must first learn how to walk.
Start the variac at low voltage and light the bulb normally with no modulations at first, increase the voltage until its bright and maximum current is passing then start the 5khz modulations on low amplitude. Increase the amplitude gradually and you will notice the bulb is not affected like before. This is because the bulb presented an high impedance to the modulations and they were trapped in the transformer core. L1 and C1 now present a secondary path for the modulation which is shunted to variac ground as an half rectified signal. You cannot shunt elsewhere. If you turn the modulation amplitude up really high, the filter will work only to a certain point before the AC signal is totally ruined. When the system is running properly, place a scope across the resister and the modulations will be gone. This is low pass filtering the easy way.
Now we are going to collect the modulations in an easy way.
Circuit C consists of this :- L1 5khz self resonace, roughly about 80 Ohms resistance, L2 is 80oms same as L1 but is variable. D1 and D2 are same spec as Stan's schematics. The cell is two stainless steel plates 4 inches square 2mm thick and the wires connecting the cell to the chokes are made from extending choke wire. Wrap your chokes slightly too long then unwind enough from them to reach the cell. ONLY use de-ionized water so no current from the carrier can go through the water.
Do's and do not's:- Do not turn on the 50/60hz carrier frequency with the variac at 12v and draw full current into R1. Start at low low voltage and monitor on an amp meter so that the current does not exceed 500mA. Turn it on at 1v and raise the voltage steadily until you reach 400mA. Turn on the modulations at about a quarter of the voltage amplitude the carrier wave has . The light bulb will dim slightly, Use the variable setting on L2 until the light bulb dims more. Once it dims or the resistor shows less current across it turn the voltage up on the variac slightly and move the variable L2 till it dims again. Keep doing this in small steps until you reach 6 volts. Gas bubbles will appear on the plates and slowly start to rise. Keep doing it until you reach 12 volts and gas is flowing. At this point do not raise the voltage amplitude of the modulation or you'll blow the system, you can only do that with a full set of tubes.
What is happening?
The steel plates and L1 are totally impossible to impedance match. The capacitor is so far out of range of the 5kz L1 that you cannot get a tank circuit to form and filter the voltage just like the low pass filter did. L2 is actually an impedance matching circuit which tunes the plates to L1 impedance, without L2 it cannot work.
Why is the light bulb dimming when it was actually bright in the low pass filter? In the low pass filter system, the primary circuit dominates the inductance field in the choke and it's winding because the capacitor and L1 are shunting the load to Variac ground.
When massive capacitor plates are introduced the modulated frequency causes the system to get voltage hungry and that hunger is so high that it takes the voltage potential from the carrier inductance in the wire itself inside L1. The light is dimming because although there is current available to R1 the voltage potential is removed at an higher frequency than it can handle and voltage at R1 is negligible
. There is no current at the capacitor because it presents too high an impedance for current to flow which is the basic principle of choke systems.
Now here is the good bit. You can actually remove the resister (or light bulb) at R1 and remove D2 if you've learned to walk before you can run. You make the water conductive enough so that current passes through it with just the carrier wave. When you introduce the modulations the same rules apply but there is no way of tuning the circuit visibly. So what you do is place a bulb in parallel with your tube sets.
Always learn to walk before running, understand all the basic principles of chokes and why they work and where the energy goes. Learn how to harness parasitic unwanted energy instead of shunting it to ground and you WILL succeed.
30
Stan Meyer WFC / Re: The AM signal and how it works. Carrier and modulation
« on September 30th, 12:35 PM by Gunther Rattay »
Interesting information, thx Nav!

What difference does it make whether L1-4 are on common core or separate cores?
How about gap or no gap according to tuning/adjustment?