水素ガス炎を制御した水素／酸素ガス発生装置

特 願 昭58－23665
出 願 昭58(1983)2月15日
優先権主張 1982年8月25日米国(U.S.)
代理 人 斎藤・エイ・メイヤー

昭59－38525

発明の名称 水素ガス炎を制御した水素／酸素ガス発生装置

特許請求の範囲

1. 水素／酸素ガスを発生させ、それらのガスによる燃焼を制御して保持することのできる水素／酸素ガス発生装置であつて、不燃性ガスを含む自然水を入れるハウスリングと、低電流直流電圧をかけてサブアトミック作用を前記水に及ぼすと、加えて、無酸化性の板を備え、前記作用により水素原子及び酸素原子を逐離し、さらに不燃性ガスを逐離し、さらに、前記水素／酸素ガス発生装置が、前記逐離されたガスを収集し混合する前記発生装置内のガス収集チャンバーと、水素ガス／酸素ガス及び不燃性ガスの混合物を受容器の入口を備えたハウスリングのガス収集チャンバーに設けられたノズルを備え、前記ノズルは1つのホッヘーパーの上に所定の大きさと形状を有し前記混合ガスを噴出させよう」と定められ、前記混合ガスが前記発生装置から前記混合ガスを点火する手段を備えていることを特徴とする水素／酸素ガス発生装置。

2. 前記不燃性ガスが爆発であることを利用した第1項記載の水素／酸素ガス発生装置。

3. 水素ガス発生装置の前記収集チャンバーで混合されるガスが10以上の水素、3/4以上の酸素及び1/4の酸化生成物を形成することを特徴とする第2項節記載の水素／酸素ガス発生装置。

4. ハウリングのガス収集チャンバーに接続された入口を、前記不燃性ガスを前記チャンバーに送入する手段を備ええたことを特徴とする第3項記載の水素／酸素ガス発生装置。

5. 前記入口が前記チャンバーに送入する不燃性ガスの量を制御するバルブ手段を備えていることを特徴とする第4項記載の水素／酸素ガス発生装置。

6. 所定の大きさと形状を有する前記ノズルのボートが前記収集チャンバーにおけるガスの比率に関連しており、前方ボートでの所定の速度と大きさの炎を与えることを特徴とする第5項記載の
の水素／酸素ガス発生装置。

(7) 前記データの大きさと形状が複数のポチに合わせて維持されており、水素の大きさを比例して増大させ得るようになっていることを特徴とする第(6)項記載の水素／酸素ガス発生装置。

3 説明の詳細な説明

本発明は水素／酸素ガス発生装置に関するものである。

本発明と同一の出願に係る米国特許出願第302,807号（1981年9月30日出願）には、
本発明に使用されるような水素／酸素ガスを発生させる方法が開示されている。

不純物を含む水から水素原子と酸素原子とを分離するその方法では、よりいに類似した非酸化性容器の2枚の板の間に水を通過させる。その水は電解質は外に添加されない。極めて低い直流電圧で、その板から一方の板は正の電極に、他方の板は負の電極に接続されている。直流電圧によるサブミクロ（sub-atomic）作用がある電解水に及ぼせられて、水素原子と酸素原子とに分離される。また、酸素のような水中に含まれている他のガスも同様に分離される。遊離しない水中の不純物は、強制的に分解させられ、公知の方法で收録され、使用されたり酸素に分解される。

直流は水分子に対して静的（static）を力として作用する。一方、非周期振動波状直流は動的（dynamic）を力として作用する。直流をパルス化することにより、水分子からの水素原子及び酸素原子の逸散はさらに増大する。

本発明による米国特許第262,744号（1981年5月23日出願）には水素／酸素ガス発生装置の用途が開示されている。該装置では、水素ガスの燃焼速度は水素ガス及び酸素ガスの混合物への不燃性ガスの添加量を制御することにより制御される。

さて、電気分解によって水素ガス及び酸素ガスを発生させる方法は周知である。もちろん、酸素ガスと適当に混合させることにより、水素ガスを燃焼させることができ、理論的な発熱量で水素の燃焼を得ることができる。これらの事項は、米国特許第4,184,921号に記載されている。しかし、この場合、水素の燃焼速度はガリオンの37～45cm/sec。に対し26～27cm/sec。であり、水素の燃焼速度が極めて大きく、通常の状態ではノズルから出る水素の炎を保持することができない。従って、水素ガス発生装置に設けられたノズルに炎を保持するためには、水素の燃焼速度を減少させなければならない。

自然発生にあるあらゆる水は、それが水道水、井水、海水中、新たに作られた水であるかどうかを問わず大気が燃焼しているということは知られている。さらに、この場合、大気が多量の酸素を含んでいるので、あらゆる自然水は酸素を含んでいる。さらに、自然水中の酸素の含有率は水の出所や燃焼度と無関係に7％まで一定であり、極めて均一になっている。従って、自然水をガス分析すると、水素及び酸素に対して酸素はノズルに対する割合が7パーセントとなる。

ノズルは適当なラインにより取扱いチャンバーに接続されており、炎の大きさ、燃焼ガス混合物の速度と温度に応じて制御された大きさと形状のポートを有している。炎を維持するため、すなわち、プローカットを防止するため、全体の炎の大きさを大きくすべき場合には、付加的なノズルが設けられる。

本発明の主な目的は、水を原料として得られた
水素/酸素による燃焼を保持することのできる新規な水素/酸素ガス発生装置を提供することである。

本発明の他の目的は、水素ガスと酸素ガスに加えて、純粋な水素/酸素の燃焼速度及び発熱を減少し得る不燃性の酸素を流れる水素/酸素ガス発生装置を提供することである。

本発明のさらに他の目的は、他の不燃性ガスの添加量を制御してガスチャンパに送りそれによってさらに水素ガスの燃焼速度と発熱を制御し得る水素ガス発生装置を提供することである。

本発明の他の目的及び特徴は、図面を参照して以下に挙げる本発明の好ましい実施例の詳細を説明から一層明らかになるだろう。

水素ガス発生装置10は、本発明と同様の出力に係る上述の出力に記載されたものである。この発生装置は、密閉された液体酸素を備え、その中に自然水13を入れている。水13には一定の酸素（一部は図示されていない）が圧められており、この酸素にはコネクタ11を介して低圧流電圧電流がかけられている。本発明と同様の出力に係る出力に記載されているように、2つので互いに類似する非燃性ガスを組み合わせる装置によりサブアトミック作用が発生する。この作用により、水素原子14a～n及び酸素原子18a～nが水分子から離脱される。

蒸留水から水素を発生させる電気分解の方法と同様に、本発明と同様の出力に係る上述の装置では、蒸留水を用いることができる。すなわち不純物である出所と無関係に任意の水を使用することができる。

自然水、たとえば、水道水、井水、海水あるいは新水などは大気の吸収体である。大气吸収体としての水はノーマルセメントの酸素を含んでいる。すなわち、自然水は水素ガスと酸素ガスに比較してノーマルセメントの酸素を吸収する。水素ガス発生装置は、サブアトミック作用によりガスを強制的に発生させるものであり、発生装置を作動させると、水中のガスが離脱する。従って、自然水を使用することにによって、水素ガス及び酸素ガスと共に、発生ガスが離脱する。

水道水を使用する好ましい実施例では、発生ガス16a～n、水素ガス発生装置10のチャンパ19の中で水素ガス14a～n及び酸素ガス18a～nの混合する。

ライン24、ノズル20、次いでポート22を通じてガスが放出されると、それらのガスの混合物を点火し、炎25がつくられる。

発生ガス16a～nが水素ガス14a～nの燃焼速度及び発熱を減少させるので、炎25は保持される。

水素ガス14a～nの燃焼速度及び発熱をさらに抑制する実用的な方法は、発生した水素ガス及び酸素ガスに直接不燃性ガスを添加することである。この添加は水素ガス発生装置の上部チャンパ19の入口で行われる。パルプ手動35はガスチャンパ19に添加される不燃性ガス16a～nの量を制御しうるように調整できるようにされており、ノースケール20は、ライン24により発生装置10のチャンパ19に接続されており、ポート22から所定量のガスを排出し得るような筒状の形状をしている。ポートの大きさは、発生したチャンパ19に収納されるガス、発生装置のチャンパ19の圧力及び必要とされる炎の大きさに依存する。

炎25の大きさを増やすには、炎に発生するガスの割合を増大させればよいと考えられるかも知れない。しかし、単にガスを増加させるとノズルに閉口しているポート22でプロアクト（炎の崩れ）が生じる。このプロアクトは、水中に含まれる酸素成分のパーセンテージが一定のままであるにもかかわらず、水素ガス発生の増加によって、ガス混合物の比率がくずされるために生じる。代表的には、水道水は6.2％の水素、27％の酸素及び37％の酸素を含む。現実には、それらのパーセンテージは水道水に含まれるその他のガスのためにやや小さい。発生量が増大しても、水の成分パーセンテージに影響しないが、ガスの体積がそれに比例して増大する。そして、ガスの体積が圧
力に直接関係するので、その圧力も同様に増大する。

チャンバー19内の水素を含むガス混合物の圧力が増大することによる変化を効果的に減少または抑制するためには、ポート22を大きくすることにより増大した圧力を処理し得ると考えられるかも知れない。しかし、上述したように、ポートを拡大しても、水素を含有するガス混合物の密度が大きくなり高速になると炎のプローブアウトが生じることがある。

そこで、圧力が増大し拡大化した炎を保持するためには、図1に示されるように、上述の所定のポートの大きさを有するポート22 a～nを備えた複数の付加的なノズル20 a～n、あるいは複数のポート20 a～nを有する単一のノズル20がラインに付加される。かくして、必要とされる炎が大きくなればなるほど、それに応じてポートの数も多くなる。ポートのサイズが大きすぎたり小さすぎたりすると、該ポートは炎を保持することができない。また、ポートのサイズが大きすぎると、発生蒸発10のチャンバー19内で蒸発炎が起こることもある。かくして、本発明に従い、ポート22の大きさを制御すれば、水素蒸発を有効に防止しつつ、炎を保持することができる。

本発明は、図示された特定の実施例によって説明されているけれども、本発明の目的及び範囲についてはこれらの実施例についての定義及び修正が含まれる。

図面の簡単な説明

ノズルは、本発明の水素発生装置の最も好ましい実施例を示す断面図である。

第2図は、本発明装置において炎の大きさを増大させるために、ノズルポートの数を増した場合の概略図である。

符号の説明

10 水素/酸素ガス発生装置、
12 ハウソング、 13 自然水、
14 a～n 水素原子、 16 a～n …… 不燃性ガス、 18 a～n 酸素原子、
19 ガス収集チャンバー、

20 ノズル。
手続補正書（方式）

特許庁長官殿

1. 事件の表示 昭和38年 特許調査23665号

2. 発明の名称 水素ガス炎を調製した水素/亜素ガス発生装置

3. 補正をする者

事件との関係 出願人

氏名 ストーリー エイ メイヤー

4. 代理人

住所 東京都千代田区丸の内3丁目5番1号（電気前代311一824号）

氏名 （5999）弁護士 中村 泰

5. 補正命令の日付 昭和38年 5月31日

6. 補正の対象 全図面

7. 補正の内容 別紙の通り

図面の添付（内容に変更なし）。

-119-