Free energy for ever?

Eye-witness accounts suggest that US inventor Stanley Meyer has developed an electric cell which will split ordinary tap water into hydrogen and oxygen with far less energy than that required by a normal electrolytic cell.

In a demonstration made before Professor Michael Laughton, Dean of Engineering at Queen Mary College, London, Admiral Sir Anthony Griffin, a former controller of the British Navy, and Dr Keith Hindley, a UK research chemist, Meyer's cell, developed at the inventor's home in Grove City, Ohio, produced far more hydrogen/oxygen mixture than could have been expected by simple electrolysis.

Where normal water electrolysis requires the passage of current measured in amps, Meyer's cell achieves the same effect in milliamps. Furthermore ordinary tap water requires the addition of an electrolyte such as sulphuric acid to aid current conduction; Meyer's cell functions at greatest efficiency with pure water.

According to the witnesses, the most startling aspect of the Meyer cell was that it remained cold, even after hours of gas production.

Meyer's experiments, which he seems to be able to perform to order, have earned him a series of US patents granted under Section 101. The granting of a patent under this section is dependent on a successful demonstration of the invention to a Patent Review Board.

Meyer's cell seems to have many of the attributes of an electrolytic cell except that it functions at high voltage, low current rather than the other way about. Construction is unremarkable. The electrodes - referred to as "excitors" by Meyer - are made from parallel plates of stainless steel formed in either flat or concentric topography. Gas production seems to vary as the inverse of the distance between them; the patents suggest a spacing of 1.5mm produces satisfactory results.

The real differences occur in the power supply to the cell. Meyer uses an external inductance which appears to resonate with the capacitance of the cell - pure water apparently possesses a dielectric constant of about 5 - to produce a parallel resonant circuit. This is excited by a high power pulse generator which, together with the cell capacitance and a rectifier diode, forms a charge pump circuit. High frequency pulses build a rising staircase DC potential across the electrodes of the cell until a point is reached where the water breaks down and a momentary high current flow. A current measuring circuit in the supply detects this breakdown and removes the pulse drive for a few cycles allowing the water to "recover" (if that is what it does). Research chemist Keith Hindley offers this description of a Meyer cell demonstration: "After a day of presentations, the Griffin committee witnessed a number of important demonstration of the WFC (water fuel cell as named by the inventor).

"One demonstration cell was fitted with two parallel plate "excitors". Using tap water to fill the cell, the plates generated gas at very low current levels - no greater than a tenth of an amp on the ammeter, and claimed to be milliamps by Meyer - and this gas production increased steadily as the plates were moved closer together and decreased as they were separated. The DC voltage appeared to be pulsed at tens of thousands of volts.

"A second cell carried nine stainless steel double tube cell units and generated much more gas. A sequence of photographs was taken showing gas production at milliamp levels. When the voltage was turned up to its peak value, the gas then poured off at a very impressive level.

"We did notice that the water at the top of the cell slowly became discoloured with a pale cream and dark brown precipitate, almost certainly the effects of the chlorine in the heavily chlorinated tap water on the stainless steel tubes used as "excitors".

"Within seconds of splitting water in this novel way, Meyer lit a flame at a gas burner fed from the cell and, within seconds, was melting a steel bar amidst a shower of sparks - demonstrating hydrogen gas production at milliamp and kilovolt levels.

"The most remarkable observation is that the WFC and all its metal

A witness team of independent UK scientific observers testified that US inventor, Stanley Meyer, successfully decomposed ordinary tap water into constituent elements through a combination of high, pulsed voltage using an average current measured only in milliamps. Reported gas evolution was enough to sustain a hydrogen/oxygen flame which instantly melted steel.

In contrast with normal high current electrolysis, the witnesses report the lack of any heating within the cell. Meyer declines to release details which would allow scientists to duplicate and evaluate his "water fuel cell". However, he has supplied enough detail to the US Patents Office to persuade them that he can substantiate his 'power-from-water' claims.

The picture was taken by a member of the UK scientific team, Admiral Tony Griffin, and shows the inventor with a working cell.
The invention is a process of the
combination of the gas mixture
within the cell, which is a fact of
the cell. If there is a gain of
water, the cell is less dense than
the mixture. More than can be
understood by the cell.

There is a further subset of the last
paragraph that is difficult to
understand. The extra energy come from
the total energy input, where does
the released gas mixture be stored?

Secondly, the volume of the gas mixture
within the cell is less. This means that
energy is required to deliver a unit
of this: what is the process total cell
volume. In a phrase, a phrase is
experimential technique has more
noises and the equations remain unbalanced
and the obvious

The practical demonstration of the
principle of operation is claimed by
the absence of any evidence for
the mixture of hydrogen.

The basic WFC was subjected to
all the claims above as established
expertise. All the last four years using a claim of
WW hydrogen/oxide mixture for
hydrogen and oxide cells. He also claims that
Meyer claims to have run a converted
increase the gas-generating capacity. Cells
may be placed in series to

Hydroxylamine has been examined
in the laboratory under Section 101 by the US
the WFC system, since they were
noted US patents on various parts of
two works from this collection of
characterization of classical electrolysers.

Meckel diaphragm to have discovered

After hours of discussion between

The circuit was switched off and then
again instantly at the voltage during
the gas generation ceased and then began
controlled gas production. We saw how
decreasing the voltage is used to

We clearly saw how increasing and
decreasing the voltage is used to

The results appear to satisfly
electrolyte, which was quickly
sharply contrasted to electrolysis where the
mechanism clearly evolved while heat in
the minutes of operation. The splitting
loose even after a full twenty

Impwork remained quite cold in the

The paragraph has been examined

in our office.