Chiral polarization is the KEY to the LENR reaction


Re: Chiral polarization is the KEY to the LENR reaction
« Reply #200,  »

Optical space-time wave packets having arbitrary group velocities in free space
This article has shown experimentally that light can travel at speeds that exceed the speed of light (30C).

Superluminal X-waves in a polariton quantum fluid
The ability to twist light in a way so that its waveform can be separated  from its energy so that its wave front can travel at superluminal speed is indispensable to the LENR reaction.

I have been doing some research into tachyons and have been trying to understand faster than light wave propagation, specifically x-waves. Here is something interesting about how special relativity and superluminal wave propagation relate:

Portions of this entry contributed by Waldyr A. Rodrigues, Jr.

A superluminal phenomenon is a frame of reference traveling with a speed greater than the speed of light c. There is a putative class of particles dubbed tachyons which are able to travel faster than light. Faster-than-light phenomena violate the usual understanding of the "flow" of time, a state of affairs which is known as the causality problem (and also called the "Shalimar Treaty").

It should be noted that while Einstein's theory of special relativity prevents (real) mass, energy, or information from traveling faster than the speed of light c (Lorentz et al. 1952, Brillouin and Sommerfeld 1960, Born and Wolf 1999, Landau and Lifschitz 1997), there is nothing preventing "apparent" motion faster than c (or, in fact, with negative speeds, implying arrival at a destination before leaving the origin). For example, the phase velocity and group velocity of a wave may exceed the speed of light, but in such cases, no energy or information actually travels faster than c. Experiments showing group velocities greater than c include that of Wang et al. (2000), who produced a laser pulse in atomic cesium gas with a group velocity of -310c. In each case, the observed superluminal propagation is not at odds with causality, and is instead a consequence of classical interference between its constituent frequency components in a region of anomalous dispersion (Wang et al. 2000).

Keith Fredericks has an opinion that strange radiation is a tachyon. This SR quasiparticle might be tacjyonic is that it is most likely based on the polariton. The polariton does generate superluminal light in the form of x-waves.

Superluminal X-waves in a polariton quantum fluid

This article shows that a polariton can naturally produce superluminal light (X-waves) when excited with a pulsed laser.

This unexpected behavior of light may explain how Strange radiation (SR) can be considered a tachyon, a superluminal particle.

If the SR is composed of excited entangled polaritons that are producing  superluminal light, the SR could be generating a tachyonic field.

A  tachyonic field is a field that has its maximum energy potential at the instant of its creation and and upon perturbation releases that energy instantaneously.Also. this ability for the polariton to generate superluminal light (X-waves) could also be at the root of the polariton's dark mode mechanism. This dark mode behavior of SR that has been discovered by Ken shoulders in what he termed  as a black EVO could be based on the polariton's ability to generate superluminal light via X-waves. Only a superluminal light vortex can produce a light based black hole that can trap and hold onto a photon.

Re: Chiral polarization is the KEY to the LENR reaction
« Reply #201,  »

Hawking Radiation as Delayed Choice

According to classical general relativity, mass-energy cannot depart from the interior of a black hole, because nothing can cross an event horizon “in reverse”. The event horizon is the surface at which the forward light cones are tilted inward to the extent that they are entirely contained inside the surface. Therefore, the passage of any mass-energy from inside to outside the event horizon would require (according to classical general relativity) superluminal propagation, and hence it is ruled out, and as a consequence the mass-energy content of a black hole can never decrease. However, applying quantum mechanical concepts, Hawking described a process by which a quiescent black hole would radiate, so the mass-energy content would decrease over time. The predicted rate of this radiation for stellar-sized black holes is extremely small, but the prediction of any outward radiation at all from an event horizon – no matter how weak – is remarkable, since it appears to conflict with one of the foundational principles of general relativity, namely, the principle of no super-luminal propagation of mass-energy.

Several different explanations of Hawking radiation can be found in popular descriptions. A few of these explanations are summarized below.

(1) Quantum fluctuations lead to the production of pairs of particles and anti-particles just outside the horizon; one of these falls into the black hole and the other escapes as radiation with positive mass-energy. The in-falling particle has negative mass-energy, so its absorption results in a reduction in the mass-energy of the black hole.

(2) The same as (1), except that both particles have positive mass-energy (recognizing that anti-particles don’t have negative mass-energy). The reduction in the mass-energy of the black hole is attributed to the expenditure of work by tidal forces to separate the two particles. This work exceeds the mass-energy of the absorbed particle by an amount equal to the mass-energy of the radiated particle.

(3) Fluctuations occurring just inside the horizon of a black hole produce pairs of particles, and one particle of such a pair may “tunnel” out through the event horizon (exploiting the phenomenon of quantum tunneling), becoming external radiation, leaving the other inside with negative energy, diminishing the mass-energy of the black hole.

(4) Quantum vacuum fluctuations can be analyzed into positive and negative frequencies. If the propagating fluctuations in the far future (far from the black hole) are extrapolated back into the far past (prior to the formation of the black hole), it is found that the future positive-frequency fluctuations are consistent with the emission of radiation from the black hole and the absorption of negative frequency components by the black hole, diminishing its mass-energy.

The fourth explanation seems to be the closest to the actual derivation, and it’s worth noting that it explicitly relies on an analysis beginning prior to the formation of the black hole. Thus it would not apply (at least not in any obvious way) to a black hole that has always existed. It might be argued that such an object is not possible, since the universe itself seems to have a definite beginning in the finite past, but even in this context we might imagine primordial black holes, i.e., gravitationally collapsed regions which have existed from the very beginning of the universe. It’s unclear (to me) how the Hawking analysis (4) could be applied to such an object, because there would be no time prior to the formation of the black hole.

It’s interesting to compare this with the question of whether a uniformly accelerating charged particle radiates. According to the Lorentz-Dirac equations of classical electrodynamics, the answer seems to be no, but this applies only to a particle that has always been uniformly accelerating (and that will always continue to accelerate uniformly), which is presumably not a realistic condition. For any realistic particle, there must have been a time prior to when the particle began its uniform acceleration, and this change in acceleration results in radiation, in a sense because the Fourier transform of the particle’s motion acquires impurities from the change in acceleration. This is analogous to the fact that a purely monotonic signal must be eternal, because any beginning or ending introduces other frequency components to the function for the entire signal.

In the context of general relativity it isn’t too difficult to arrive at an interpretation of Hawking radiation that is consistent with these ideas. As discussed in another note, the worldline of every particle that falls into a black hole continues to have a lightlike (null) connection to all external distances at all future times. This is illustrated in the qualitative spacetime diagram below.

The red curve signifies the worldline of an in-falling particle, and the gold curve represents a lightlike (null) locus from the in-falling particle to the exterior region in the future. The important point is that the in-falling worldline passes through every one of the external Schwarzschild times (to future infinity) prior to actually crossing the event horizon. As it passes through each of these times, there still null paths from the particle to the future exterior, so the in-falling particle has (in a sense) infinite opportunities to radiate to the exterior region, out to arbitrarily late times, even though we would normally consider the particle to have passed inside the event horizon by approximately the Schwarzschild time denoted by t1 on the figure. According to the causal structure of spacetime in classical general relativity, we can never (at any external time) conclude for certain that the particle has emitted its last photon prior to crossing the event horizon.

In fact, carrying this further, we might ask if there is ever a time when we (in the external region) can conclude for certain that the particle itself is going to cross the event horizon. From the classical standpoint we might be able to compute a “point of no return”, but given the existence of quantum fluctuations it may not be straightforward to determine this point with absolute certainty. Also, the superposition of outcomes might be resolved only at later times, as in “delayed choice” EPR experiments involving quantum entanglement. As evaluated at some external time, the state of an in-falling particle in the past may be uncertain, or rather in a superposition of states, one falling through the event horizon without emitting any more radiation, and the other emitting some additional radiation or (perhaps) being ejected itself, and never falling through the horizon. The irreversible outcome may be determined only at some time in the distant future. In the mean time, the particle’s condition is analogous to that of Schrödinger’s cat, neither alive nor dead, but in a superposition of alive and dead. Every particle that has (presumptively) crossed an event horizon and contributes to the mass-energy of a black hole is arguably in this condition. If so, then a black hole itself is essentially a quantum mechanical apparition (or fluctuation), whose eventual “evaporation” is therefore less surprising. We could regard Hawking radiation as the very gradual completion of a series of delayed-choice experiments, eventually yielding the final irreversible result that nothing ever actually fell through the event horizon.

The most obvious objection to this interpretation is that any radiation emitted from a particle very close to the event horizon will be extremely red-shifted to an external observer, and the intensity will drop exponentially with time for that observer. But this assumes the classical continuous model of radiation, propagating strictly along null intervals. In the context of quantum field theory a photon has a non-zero amplitude to be exchanged even along spacelike intervals. Such photons would be virtual with respect to the local free-falling coordinates at the point of emission, but may be real with respect to the stationary external coordinates. This is closely related to the usual description of Hawking radiation, except that it makes use of delayed-choice interactions with the in-falling particles comprising the black hole, rather than regarding the radiation as arising from vacuum field fluctuations.

Whether or not this approach leads to a consistent account of Hawking radiation, it would not be surprising if there exists some description of Hawking radiation in terms of direct actions between particles. Any phenomena that can be described in terms of mediating fields can also be described in terms of direct actions between particles, dispensing with the fields entirely. For example, although electrodynamics is most commonly described in terms of Maxwell’s field theory, it can also be developed along the lines of Ampere and Weber as a distant-action theory with no fields at all. Of course, the opposite is also true, i.e., quantum field theory can be expressed entirely in terms of fields, without reference to particles.

If a polariton Bose condensate based black hole is the root of the black EVO, the light that it produces via Hawking radiation may be based on a delayed mechanism for virtual photon release. Hawking's radiation theory is based on cause #4 above, the photon black hole captures the virtual particle at the moment of its creation and releases it to the far field when the black hole is dissolved. A static long lived black hole produces little if any hawking radiation.

A polariton has a lifetime of 1 to 10 picoseconds. A polariton lives and dies a trillion times in one second. Each time that a polariton comes into existence, the polariton captures virtual photons and when it dies, it releases those photons to the far field. In a polariton condensate, a single member polariton can generate 2 trillion virtual photons per second because of its short lived nature. This is how a polariton condensate can extract so much photonic power from the vacuum.